cho x^4/a+y^4/b=1/a+b và x^2+y^2=1.Tính T=ay^2+bx^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giúp mk vs các bn ui, mai mk nộp bài rùi, mk cần gấp lắm lắm,...giúp mk nha....
Ta có :
A= ax+ay+bx+by+x+y
= a(x+y)+b(x+y)+x+y
= (a+b+1)(x+y)
= (\(\dfrac{1}{3}\)+1).\(\dfrac{-9}{4}\)
= \(\dfrac{4}{3}.\dfrac{-9}{4}\)
= -3
B= ax+ay-bx-by-x-y
= a(x+y)-b(x+y)-(x+y)
= (a-b-1)(x+y)
= (\(\dfrac{1}{2}\)-1).\(\dfrac{1}{2}\)
= \(\dfrac{-1}{2}.\dfrac{1}{2}\)
= \(\dfrac{-1}{4}\)
a) ax+ay+bx+by
=a(x+y)+b(x+y)
=(x+y)(a+b)
=17.(-2)
=-34
b)ax-ay+bx-by
=a(x-y)+b(x-y)
=(x-y)(a+b)
=(-7).(-1)
=7
a) ax + ay + bx + by b) ax - ay + bx - by
= a.(x+y) + b.(x+y) =a.(x-y) + b.(x-y)
= a .17 + b .17 =a.(-1) + b.(-1)
=17.(a+b) =(-1) . (a+b)
=17.(-2) =(-1) . (-7)
=-34 =7
\(x^2+y^2=1\Rightarrow\left(x^2+y^2\right)^2=1\Rightarrow x^4+y^4+2x^2y^2=1\)
\(\Rightarrow\frac{1}{a+b}=\frac{x^4+y^4+2x^2y^2}{a+b}\)
Ta có:
\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{x^4+y^4+2x^2y^2}{a+b}\Leftrightarrow\frac{bx^4+ay^4}{ab}=\frac{x^4+y^4+2x^2y^2}{a+b}\)
\(\Leftrightarrow\left(bx^4+ay^4\right)\left(a+b\right)=ab\left(x^4+y^4+2x^2y^2\right)\)
\(\Leftrightarrow abx^4+b^2x^4+a^2y^4+aby^4=abx^4+aby^4+2abx^2y^2\)
\(\Leftrightarrow\left(bx^2\right)^2+\left(ay^2\right)^2-2abx^2y^2=0\)
\(\Leftrightarrow\left(bx^2-ay^2\right)^2=0\)
\(\Leftrightarrow bx^2-ay^2=0\)
\(\Rightarrow bx^2=ay^2\)
Ta có x^4/a + y^4/b = 1/(a + b)
<=> x^4/a + y^4/b = (x^2 + y^2)^2/(a + b).
Bn tự qui đồng và khử mẫu nha, xong thì đc : (a + b)(bx^4 + ay^4) = ab(x^4 + 2x^2y^2 + y^4)
<=> abx^4 + a^2y^4 + b^2x^4 + aby^4 = abx^4 + 2abx^2y^2 + aby^4
<=> a^2y^4 - 2abx^2y^4 + b^2x^4 = 0
<=> (ay^2 - bx^2)^2 = 0
<=> ay^2 - bx^2 = 0
<=> bx^2 = ay^2 => đpcm
cam on nha