Giai pt :x^2-x/x^2-x+1 - x^2-x+2/x^2-x-2=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2(x2+x+1)2-7(x-1)2=13(x3-1)
<=> 2(x2+x+1)2-7(x-1)2-13(x3-1)=0
<=>2(x2+x+1)2-14(x3-1)+(x3-1)-7(x-1)2=0
<=> 2(x2+x+1)(x2+x+1-7x+7)+(x-1)(x2+x+1-7x+7)=0
<=> (2x2+2x+2)(x2-6x+8)+(x-1)(x2-6x+8)=0
<=> (x2-6x+8)(2x2+3x+1)=0
<=> (x2-4x-2x+8)(2x2+2x+x+1)=0
<=> [x(x-4)-2(x-4)][2x(x+1)+(x+1)]=0
<=> (x-4)(x-2)(x+1)(2x+1)=0
Đến đây dễ rồi nhé bạn
\(\Leftrightarrow x^2+x+2-1=\left(2-x\right)\left(\sqrt{x^2+x+2}-1\right)\)
\(\Leftrightarrow\left(\sqrt{x^2+x+2}-1\right)\left(\sqrt{x^2+x+2}+1\right)-\left(2-x\right)\left(\sqrt{x^2+x+2}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2+x+2}-1\right)\left(\sqrt{x^2+x+2}+1-2+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+2}=1\left(1\right)\\\sqrt{x^2+x+2}=1-x\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^2+x+1=0\left(vn\right)\)
\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}1-x\ge0\\x^2+x+2=\left(1-x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\3x=-1\end{matrix}\right.\) \(\Rightarrow x=-\frac{1}{3}\)
=>\(\dfrac{-1}{x-1}+\dfrac{1}{x-2}-\dfrac{1}{x-2}+\dfrac{1}{x-3}-\dfrac{1}{x-3}+\dfrac{1}{x-4}=2\)
=>\(\dfrac{1}{x-4}-\dfrac{1}{x-1}=2\)
=>\(\dfrac{x-1-x+4}{x^2-5x+4}=2\)
=>2x^2-10x+8=3
=>2x^2-10x+5=0
=>\(x=\dfrac{5\pm\sqrt{15}}{2}\)
\(\frac{x^2-x}{x^2-x+1}-\frac{x^2-x+2}{x^2-x-2}=1\)
\(=\frac{x\left(x-1\right)}{\left(x-1\right)^2}+\frac{x^2-x-2}{x^2-x-2}\)
\(=\frac{x}{x-1}+1=1\)
\(\Rightarrow\frac{x}{x-1}=0\Rightarrow x=0\)
Vậy x = 0
cam on ban nhieu nha