Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
a: Thay x=-2 vào pt, ta được:
-4-m=1-(-2)=1+2=1
=>-m=5
hay m=-5
b: Thay x=-2 vào pt, ta được:
-2-k=-6+1=-5
=>k=3
bài 1 câu a,b tự làm nhé " thay k=-3 vào là ra
bài 1 câu c "
\(4x^2-25+k^2+4kx=0.\)
thay x=-2 vào ta được
\(16-25+k^2+-8k=0\)
\(-9+k^2-8k=0\Leftrightarrow k^2+k-9k-9=0\)
\(k\left(k+1\right)-9\left(k+1\right)=0\)
\(\left(k+1\right)\left(k-9\right)=0\)
vậy k=1 , 9 thì pt nhận x=-2
bài 2 xác đinh m ? đề ko có mờ đề phải là xác định a nếu là xác định a thì thay x=1 vào rồi tính là ra
bài 3 cũng éo hiểu xác định a ? a ở đâu
1 là phải xác đinh m , nếu là xác đinh m thì thay x=-2 vào rồi làm
. kết luận của chúa Pain đề như ###
bai 1
1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0
<=>(2x)^2-5^2=0
<=>(2x+5)*(2x-5)=0
<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự
Phân tích đa thức thành nhân tử , ta đươc :
\(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x_1=-2\\x_2=1\end{array}\right.;x^2+x+6=\left(x+\frac{1}{2}\right)^2+5\frac{3}{4}\ne0\forall x.\)
Vậy pt đã cho các nghiệm : \(x_1=-2;x_2=1.\)
a) \(x^4-2x^3+4x^2-3x+2=0\)
\(\Leftrightarrow x^4-2x^3+x^2+3x^2-3x+2=0\)
\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+3\left(x^2-x+\frac{1}{4}\right)+\frac{5}{4}=0\)
\(\Leftrightarrow\left(x^2-x\right)^2=3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}=0\)
Vì (x2 -x )2 \(\ge0\)với mọi x
\(\Rightarrow\left(x^2-x\right)^2+3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}>0\)với mọi x
=> Phương trình trên vô nghiệm - đpcm
b) Ta có
x6+x5+x4+x3+x2+x+1=0
Nhận thấy x = 1 không là nghiệm của phương trình. Nhân cả hai vế của phương trình với x-1 được :
(x−1)(x6+x5+x4+x3+x2+x+1)=0
⇔x7−1=0
⇔x7=1
⇔x=1
(vô lí)
Điều vô lí chứng tỏ phương trình vô nghiệm.
a ) \(\left(2x-1\right)\left(x-3\right)\left(x+7\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+1=0\\x-3=0\\x+7=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=3\\x=-7\end{array}\right.\)
Vậy phương trình đã cho các nghiệm \(x=-\frac{1}{2};x=3;x=-7.\)
b ) \(x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x-3=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=3\end{array}\right.\)
Vậy phương trình đã cho các nghiệm \(x=1,x=3\).
4x2 - 25 + k2 + 4kx = 0
<=> ( 2x + k )2 - 25 = 0
a) Với k = 0 => ( 2x + 0 )2 - 25 = 0
4x2 - 25 = 0
( 2x - 5).(2x+5) = 0
=> \(\left[{}\begin{matrix}2x-5=0\\2x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2,5\\x=-2,5\end{matrix}\right.\)
b) Với k = -3 => ( 2x-3)2 - 25 =0
( 2x-3-5 ). ( 2x-3+5) = 0
( 2x-8). (2x+2) =0
=> \(\left[{}\begin{matrix}2x-8=0\\2x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)
c) Để pt nhận x= -2 làm nghiệm
=> 4. (-2)2 - 25 + k2 +4k . (-2) =0
4 . 4 - 25 + k2 - 8k = 0
k2 -8k - 9 = 0
( k -9 ). ( k + 1 ) =0
=> \(\left[{}\begin{matrix}k-9=0\\k+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}k=9\\k=-1\end{matrix}\right.\)
Vậy nếu k=9 hoặc k=-1 thì pt nhận x=-2 làm nghiệm
a, Thay k=0 vào phương trình, ta có:
\(4x^2-25=0\)
\(4x^2=25\Rightarrow x=\sqrt{\dfrac{25}{4}}=\dfrac{5}{2}.\)
Vậy nghiệm của PT là \(\dfrac{5}{2}\)khi k=0.
b, Thay k=-3 vào phương trình, ta có:
\(4x^2-25+9-12x=0\)
\(4x^2-12x=16\)
\(x^2-3x=4\)
\(x^2-3x-4=0\)
\(x^2-4x+\left(x-4\right)=0\)
\(\left(x-4\right)\left(x+1\right)=0\)
\(\Rightarrow x-4=0\) hoặc \(x+1=0\)
\(\Rightarrow x=4\) hoặc \(x=-1\)
Vậy phương trình có hai nghiệm là 4 và -1 khi k=-3.
c, Cho : \(16-25+k^2-8k=0\)
\(k^2-8k-9=0\)
\(k^2-9k+\left(k-9\right)=0\)
\(\left(k-9\right)\left(k+1\right)=0\)
\(\Rightarrow k-9=0\) hoặc \(k+1=0\)
\(\Rightarrow k=9\) hoặc \(k=-1\)
Vậy các giá trị của k là 9 và -1 để pt nhận x=-2 làm nghiệm.