213. Cho \(x>0\). Tìm giá trị lớn nhất của \(P=\sqrt{x}-x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng bđt bunyakovsky cho 2 bộ số (1;1) và (căn x;căn y) ta có: (1^2+1^2)((căn x)^2 +(căn y)^2)>=(1.căn x=1.căn y)^2
<=>2(x+y)>=(căn x+căn y)^2
<=>A=căn x+căn y<=căn(2(x+y))=căn(2.1)=căn 2
đẳng thức xảy ra <=> (căn x)/1=(căn y)/1 và x+y=1<=>x=y=1/2
vậy maxA=căn 2<=>x=y=1/2
Áp dụng bất đẳng thức Bunhiacopxki:
\(P^2\le\left(1^2+1^2+1^2\right)\left(2x+2y+2z+xy+yz+xz\right)=3\left(4+xy+yz+xz\right)\)
Mặt khác ta có : \(xy+yz+xz\le x^2+y^2+z^2\le\frac{\left(x+y+z\right)^2}{3}=\frac{4}{3}\) (Dấu "=" xảy ra khi x=y=z=2/3)
=> \(P\le\sqrt{3\left(4+\frac{4}{3}\right)}=4\)khi x=y=z=2/3
Vậy Max P = 4 <=> x=y=z=2/3
DO x >0 nên ta có: =>P bé hơn hoặc bằng 0( dấu bằng xảy ra khi x=1);
Giả sử x lớn hơn 1, tức là x lớn hơn hoặc bằng hai , ta có: gọi bình phương của x = y.y thì:
\(\sqrt{y.y}-y.y=y-y^2\)Do x>0 nên y cũng phải lớn hơn 0, vậy \(y-y^2< 0\)
=> loại vì với x=1 thì biểu thức có giá trị 0... Vậy P lớn nhất là 0(x=1)