Cho a, b, c \(\ge\)0. CM: \(a^2\left(b+c-a\right)+b^2\left(c+a-b\right)+c^2\left(a+b-c\right)\le3abc\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bđt <=> \(a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\) Schur bậc 3 (bn ko bt thì search gg)
Có \(VT=ab\left(a+b\right)+ac\left(a+c\right)+bc\left(b+c\right)-\left(a^3+b^3+c^3\right)\)
BĐT cần chứng minh \(\Leftrightarrow ab\left(a+b\right)+ac\left(a+c\right)+bc\left(b+c\right)\le a^3+b^3+c^3+3abc\)
Áp dụng bđt AM-GM có: \(\left(a+b-c\right)\left(a-b+c\right)\le\left[\dfrac{a+b-c+a-b+c}{2}\right]^2=a^2\)
Tương tự cũng có: \(\left(a-b+c\right)\left(b+c-a\right)\le c^2\); \(\left(a+b-c\right)\left(b+c-a\right)\le b^2\)
Nhân vế với vế\(\Rightarrow\left(a+b-c\right)\left(a-b+c\right)\left(c+b-a\right)\le abc\) (lđ)
\(\Leftrightarrow3abc+a^3+b^3+c^3\ge ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)\) (BĐT cần chứng minh)
Dấu bằng xảy ra khi a=b=c
a)Áp dụng BĐT Cauchy-Schwarz dạng Engel:
\(VT=\left(\frac{a^4}{a}+\frac{b^4}{b}+\frac{c^4}{c}\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\ge\frac{9\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}\ge\frac{9\left[\frac{\left(a+b+c\right)^2}{3}\right]^2}{\left(a+b+c\right)^2}=\left(a+b+c\right)^2\)
Đẳng thức xảy ra khi \(a=b=c\)
b) \(VT-VP=\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(c+a\right)\left(c-a\right)^2\ge0\)
Đẳng thức xảy ra khi \(a=b=c\)
c) Theo câu b và BĐT Cauchy-Schwarz:
\(\Rightarrow3.3\left(a^3+b^3+c^3\right)\ge3\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(\ge3\left(a+b+c\right)\left[\frac{\left(a+b+c\right)^2}{3}\right]=\left(a+b+c\right)^3\)
Đẳng thức xảy ra khi \(a=b=c\)
ta có:
\(VT=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)-a^3-b^3-c^3\)
Áp dụng BĐT schur:
\(a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
do đó \(VT\le a^3+b^3+c^3+3abc-a^3-b^3-c^3=3abc\)(đpcm)
dấu = xảy ra khi a=b=c hoặc a=0,b=c và các hoán vị
Vì vai trò của a,b,c là như nhau , nên có thể giả thiết \(a\ge b>c>0.\)
Có thể thấy rằng phải chứng minh : \(B\ge0,\)với
\(B=3abc+a^3+b^3+c^3-a^2b-b^2a-a^2c-b^2c-c^2a-c^2b\)
\(=a^2\left(a-b\right)+b^2\left(b-a\right)+c\left(2ab-a^2-b^2\right)+c\left(c^2-bc-ac+ab\right)\)
\(=\left(a-b\right)\left(a^2-b^2\right)-c\left(a-b\right)^2+c\left(c-a\right)\left(c-b\right)\)
\(=\left(a-b\right)^2\left(a+b-c\right)+\left(b-c\right)\left(a-c\right)\)
Do giả thiết \(a\ge b\ge c,c>0\)
\(\RightarrowĐPCM\)
Áp dụng bđt Cauchy-Schwarz:
\(\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge\frac{\left(2a+2b+2c\right)^2}{a+b+c}=\frac{4\left(a+b+c\right)^2}{a+b+c}=4\left(a+b+c\right)\)
\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}=\frac{c^2}{c^2(a+b)}+\frac{a^2}{a^2(b+c)}+\frac{b^2}{b^2(c+a)}+\frac{(\sqrt[3]{abc})^2}{2abc}\)
\(\geq \frac{(c+a+b+\sqrt[3]{abc})^2}{c^2(a+b)+a^2(b+c)+b^2(c+a)+2abc}=\frac{(a+b+c+\sqrt[3]{abc})^2}{(a+b)(b+c)(c+a)}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c$
Không mất tính tổng quát ta giả sử: \(a\ge b\ge c\ge0\)
Đầu tiên ta chứng minh
\(\left(a-b\right)^2\left(a+b-c\right)+\left(b-c\right)^2\left(b+c-a\right)+\left(c-a\right)^2\left(c+a-b\right)\ge0\left(1\right)\)
Ta xét 2 trường hợp:
TH 1: \(b+c\le a\)
\(\Leftrightarrow\hept{\begin{cases}a-c\ge b-c\\a+c-b\ge b+c-a\end{cases}}\)
\(\Rightarrow\left(a-c\right)^2\left(a+c-b\right)\ge\left(b-c\right)^2\left(b+c-a\right)\)
\(\Rightarrow\left(1\right)\)đúng
TH 2: \(a+b-c\ge a+c-b\ge b+c-a\ge0\) thì (1) đúng.
\(\Rightarrow\left(a-b\right)^2\left(a+b-c\right)+\left(b-c\right)^2\left(b+c-a\right)+\left(c-a\right)^2\left(c+a-b\right)\ge0\)
\(\Leftrightarrow a^3+b^3+c^3-a^2b-a^2c-b^2a-b^2c-c^2a-c^2b+3abc\ge0\)
\(\Leftrightarrow3abc\ge\left(a^2b+a^2c-a^3\right)+\left(b^2a+b^2c-b^3\right)+\left(c^2a+c^2b-c^3\right)\)
\(\Leftrightarrow a^2\left(b+c-a\right)+b^2\left(a+c-b\right)+c^2\left(a+b-c\right)\le3abc\)
Có cho a,b,c là 3 cạnh của tam giác không ta