K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2023

\(xy^2+2xy-8y+x=0\)

\(\Leftrightarrow xy^2+2xy+x=8y\)

\(\Leftrightarrow x\left(y^2+2y+1\right)=8y\)

\(\Leftrightarrow x\left(y+1\right)^2=8y\)

\(\Leftrightarrow\left(y+1\right)^2=\dfrac{8y}{x}=2^2.\dfrac{2y}{x}\left(x\ne0\right)\left(1\right)\)

Ta thấy \(VP=\left(y+1\right)^2\) là số chính phương lẻ hoặc chẵn

mà \(VP=2^2.\dfrac{2y}{x}\) là số chính phương chẵn \(\left(2^2;\dfrac{2y}{x}⋮2\right)\) và \(\dfrac{2y}{x}\) cũng là số chính phương

\(\Rightarrow\left(y+1\right)^2\) là số chính phương chẵn

\(\Rightarrow y\) là số lẻ

Vậy để thỏa \(\left(1\right)\) ta thấy \(y=1;x=2\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(2;1\right)\right\}\left(x;y\in Z\right)\)

30 tháng 7 2023
  1. Nhân cả hai vế của phương trình với y, ta được:

xy^3 + 2xy^2 - 8y^2 + x = 0

  1. Đặt z=xy, ta được:

z^3 + 2z^2 - 8z + x = 0

  1. Phương trình này có thể được giải bằng cách sử dụng phương pháp phân tích đa thức. Ta có:

z = (1 + 2 \sqrt{2}) \pm (1 - 2 \sqrt{2}) \sqrt{3}

  1. Thay z bằng xy, ta được:

xy = (1 + 2 \sqrt{2}) \pm (1 - 2 \sqrt{2}) \sqrt{3}

  1. Giải nghiệm nguyên cho x và y, ta được:

(x, y) = (1, 1), (1, -1), (-1, 1), (-1, -1)

Vậy, nghiệm nguyên của phương trình xy2+2xy−8y+x=0(1,1),(1,−1),(−1,1),(−1,−1).

thumb_upthumb_down

share

Tìm trên Google

 

22 tháng 1 2017

Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số

Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số 

22 tháng 1 2017

giải zõ hộ

6 tháng 9 2021

\(\sqrt{x+3}-\sqrt{7-x}>\sqrt{2x-8}\)

⇔ \(\sqrt{x+3}>\sqrt{7-x}+\sqrt{2x-8}\)

⇔ \(\left\{{}\begin{matrix}4\le x\le8\\x+3>7-x+2x-8+2\sqrt{\left(7-x\right)\left(2x-8\right)}\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}4\le x\le8\\x+3>x-1+2\sqrt{\left(7-x\right)\left(2x+8\right)}\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}4\le x\le8\\4>2\sqrt{\left(7-x\right)\left(2x+8\right)}\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}4\le x\le8\\\sqrt{\left(7-x\right)\left(2x-8\right)}< 2\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}4\le x\le8\\-2x^2+22x-56< 2\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}4\le x\le8\\\left[{}\begin{matrix}x>\dfrac{11+\sqrt{5}}{2}\\x< \dfrac{11-\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}4\le x< \dfrac{11-\sqrt{5}}{2}\\\dfrac{11+\sqrt{5}}{2}< x\le8\end{matrix}\right.\)

Các giá trị nguyên của x thỏa mãn là S = {4 ; 7 ; 8}

 

6 tháng 9 2021

Ấy chết sai điều kiện XĐ rồi, bạn sửa lại điều kiện thôi nhé

a: Khi m=1 thì phương trình sẽ là x^2-2x-1=0

=>x^2-2x+1-2=0

=>(x-1)^2=2

=>\(x=\pm\sqrt{2}+1\)

b: Δ=(-2)^2-4*1*(-m^2)=4m^2+4>=4>0

=>Phương trình luôn có hai nghiệm phân biệt

AH
Akai Haruma
Giáo viên
29 tháng 1 2023

Lời giải:

$x^2+4y^2-2xy=13$
$\Leftrightarrow (x^2+y^2-2xy)+3y^2=13$

$\Leftrightarrow (x-y)^2+3y^2=13$

$\Rightarrow 3y^2=13-(x-y)^2\leq 13< 15$

$\Rightarrow y^2< 5$

Vì $y^2\geq 0$ với mọi $y$ nguyên nên $y^2\in\left\{0; 1;4\right\}$

Với $y^2=0$:

$(x-y)^2=13-3y^2=13$ (loại vì 13 không là scp)

Với $y^2=1$:

$(x-y)^2=13-3y^2=10$ (loại vì 10 không là scp)

Với $y^2=4$:

$(x-y)^2=13-3y^2=1$

$\Rightarrow x-y=\pm 1$

$\Rightarrow x=y\pm 1$

$y^2=4\Rightarrow y=\pm 2$

Với $y=2$ thì $x=1$ hoặc $x=3$

Với $y=-2$ thì $x=-3$ hoặc $y=-1$

3 tháng 3 2022

bn học Δ chx nhỉ

3 tháng 3 2022

Lớp 8 chx học cái đó, này bài của đứa em :((

Còn mình thì học r, tại lớp 9 học r nhm sợ đứa e ko hiểu cái đăng lên , k ngờ rằng ....

12 tháng 11 2021

\(x^2+2y^2-2xy+y=0\) đề phải như thế này chứ

12 tháng 11 2021

à, hình như tớ chép sai, vậy như thế làm thế nào vậy?

9 tháng 9 2017

pt⇔y​2​​(x​2​​−7)=(x+y)​2​​(1)
Phương trình đã cho có nghiệm x=y=0x=y=0
Xét x,y\ne0x,y≠0, từ (1)(1) suy ra x^2-7x​2​​−7 là một số chính phương
Đặt x^2-7=a^2x​2​​−7=a​2​​ ta có: 
\left(x-a\right)\left(x+a\right)=7(x−a)(x+a)=7 từ đây tìm được x
Vậy (x,y)=(0,0);(4,-1);(4,2);(-4,1);(-4;-2)(x,y)=(0,0);(4,−1);(4,2);(−4,1);(−4;−2)