Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^3 + 1=
8 + x^3=
27x^3 - 64y^3=
x^3 phần 64 - 1 phần 25
\(x^3+1\)
\(=x^3+1^3\)
\(=\left(x+1\right)\left(x^2-x+1\right)\)
______
\(8+x^3\)
\(=2^3+x^3\)
\(=\left(2+x\right)\left(4-2x+x^2\right)\)
\(27x^3-64y^3\)
\(=\left(3x\right)^3-\left(4y\right)^3\)
\(=\left(3x-4y\right)\left(9x^2+12xy+16y^2\right)\)
\(\dfrac{x^3}{64}-\dfrac{1}{125}\)
\(=\left(\dfrac{x}{4}\right)^3-\left(\dfrac{1}{5}\right)^3\)
\(=\left(\dfrac{x}{4}-\dfrac{1}{5}\right)\left(\dfrac{x^2}{16}+\dfrac{x}{20}+\dfrac{1}{25}\right)\)
x^3+1=(x+1)(x^2-x+1)
x^3+8=(x+2)(x^2-2x+4)
27x^3-64y^3=(3x-4y)(9x^2+12xy+16y^2)
\(\dfrac{x^3}{64}-\dfrac{1}{25}=\left(\dfrac{1}{4}x-\sqrt[3]{\dfrac{1}{5}}\right)\left(\dfrac{1}{16}x^2+\dfrac{1}{4\sqrt[3]{5}}\cdot x+\dfrac{1}{\sqrt[3]{25}}\right)\)
\(x^3+1\)
\(=x^3+1^3\)
\(=\left(x+1\right)\left(x^2-x+1\right)\)
______
\(8+x^3\)
\(=2^3+x^3\)
\(=\left(2+x\right)\left(4-2x+x^2\right)\)
______
\(27x^3-64y^3\)
\(=\left(3x\right)^3-\left(4y\right)^3\)
\(=\left(3x-4y\right)\left(9x^2+12xy+16y^2\right)\)
______
\(\dfrac{x^3}{64}-\dfrac{1}{125}\)
\(=\left(\dfrac{x}{4}\right)^3-\left(\dfrac{1}{5}\right)^3\)
\(=\left(\dfrac{x}{4}-\dfrac{1}{5}\right)\left(\dfrac{x^2}{16}+\dfrac{x}{20}+\dfrac{1}{25}\right)\)
x^3+1=(x+1)(x^2-x+1)
x^3+8=(x+2)(x^2-2x+4)
27x^3-64y^3=(3x-4y)(9x^2+12xy+16y^2)
\(\dfrac{x^3}{64}-\dfrac{1}{25}=\left(\dfrac{1}{4}x-\sqrt[3]{\dfrac{1}{5}}\right)\left(\dfrac{1}{16}x^2+\dfrac{1}{4\sqrt[3]{5}}\cdot x+\dfrac{1}{\sqrt[3]{25}}\right)\)