tìm giá trị nhỏ nhất |x+2|+|x+8|+1 `(` cần làm rõ đoạn: dấu `=` xảy ra khi..)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+1 còn tùy vào từng loại cần tìm nếu đơn giản là đa thức bậc 2 thì sử dụng máy tính hoặc cứ tìm thôi ;-;
+2 Vì \(m^2+3\ge3\) thì để dấu = xảy ra tức là : \(m^2+3=3\) \(\Leftrightarrow m^2=0\)
<=> m = 0 .
em ơi phần a có ( x+1)2 luôn luôn lớn hơn hoặc = 1 nên(x+1)2+5 luôn bằng 5 hoặc lớn hơn 5 . Ta không thể tìm được Max của A, nhỏ nhất khi x=-1
* Xem lại đề bài nhé!
B) Không thể tìm được gtln hay gtnn vì chẳng có tính chất nào với câu này cả em nhé
c) Để N lớn nhất thì (x-2)2+4 phải nhỏ nhất. Dễ thấy (x-2)^2-4 lên hơn hoặc bằng 4( bằng 4 khi x= -2) nên Min N= 2
phần c mình ghi min sửa lại cho mình là MAX. Hihi ẩu quá
1.
A = | x | + 3
vì | x | \(\ge\)0 nên | x | + 3 \(\ge\)3
\(\Rightarrow\)GTNN của A = 3 khi | x | = 0 hay x = 0
tương tự
2.
M = 5 - | x |
vì | x | \(\ge\)0 nên 5 - | x | \(\le\)5
\(\Rightarrow\)GTLN của M = 5 khi | x | = 0 hay x = 0
a.
Đặt \(\sqrt{x}+1=t\Rightarrow t\ge3\)
\(\sqrt{x}=t-1\)
\(\Rightarrow D=\dfrac{\left(t-1\right)^2-\left(t-1\right)+2}{t}=\dfrac{t^2-3t+4}{t}=t+\dfrac{4}{t}-3\)
\(D=\dfrac{4t}{9}+\dfrac{4}{t}+\dfrac{5t}{9}-3\ge2\sqrt{\dfrac{16t}{9t}}+\dfrac{5}{9}.3-3=\dfrac{4}{3}\)
\(D_{min}=\dfrac{4}{3}\) khi \(t=3\) hay \(x=4\)
b.
Đặt \(\sqrt{x}+2=t\Rightarrow t\ge4\)
\(\Rightarrow\sqrt{x}=t-2\)
\(M=\dfrac{\left(t-2\right)^2+8}{t}=\dfrac{t^2-4t+12}{t}=t+\dfrac{12}{t}-4\)
\(M=\dfrac{3t}{4}+\dfrac{12}{t}+\dfrac{1}{4}t-4\)
\(M\ge2\sqrt{\dfrac{36t}{4t}}+\dfrac{1}{4}.4-4=3\)
\(M_{min}=3\) khi \(t=4\) hay \(x=4\)
Dấu = xảy ra khi (x+8)(x+2)<=0
Th1: x+8>=0 và x+2<=0
=>-8<=x<=-2(nhận)
Th2: x+8<=0 và x+2>=0
=>x>=-2 và x<=-8
=>Loại
sao lại <=0