K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
30 tháng 7 2023

\(5^x-1=2023^x-1\\ \Leftrightarrow5^x=2023^x\\ \Leftrightarrow x=0\)

Vậy x = 0.

30 tháng 7 2023

                      5x-1 = 2023x-1

⇒    2023x-1 : 5x-1 = 1

⇒      \(\left(\dfrac{2023}{5}\right)^{x-1}\) = 1

⇒      \(\left(\dfrac{2023}{5}\right)^{x-1}\) = \(\left(\dfrac{2023}{5}\right)^0\)

⇒                  x - 1 = 0

⇒                       x = 0 + 1

⇒                       x = 1

    Vậy x = 1

 

28 tháng 1 2023

ủa tìm x thì p có dầu bằng chứ?

bn ktra lại xem

29 tháng 4 2023

Với x = 2023 

<=> x + 1 = 2024

Khi đó P(2023) = x2023 - (x + 1).x2022 + ... + (x + 1).x - 1

= x2023 - x2023 - x2022 + .. + x2 + x - 1

= x - 1 = 2023 - 1 = 2022

24 tháng 10 2023

loading...  loading...  loading...  loading...  

24 tháng 10 2023

`(2^x+1)^2 =25`

`=> (2^x+1)^2 = (+-5)^2`

\(\Rightarrow\left[{}\begin{matrix}2^x+1=5\\2^x+1=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2^x=4\\2^x=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x\in\varnothing\end{matrix}\right.\)

\(\left(x+6\right)\left(5^x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+6=0\\5^x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-6\\5^x=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=0\end{matrix}\right.\)

\(\left(x-3\right)^{2023}=x-3\)

\(\Rightarrow\left(x-3\right)^{2023}-\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left[\left(x-3\right)^{2022}-1\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\\left(x-3\right)^{2022}-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\\left(x-3\right)^{2022}=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x-3=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)

9 tháng 5 2022

`2x-15=-25`

`2x=-10`

`x=-5`

___________

`3/5<x/10<4/5`

`3/5=(3xx10)/(5xx10)=30/50`

`x/10=(5x)/(10xx5)=(5x)/50`

`4/5=(4xx10)/(5xx10)=40/50`

`=>30/50<(5x)/50<40/50`

`=>30<5x<40`

`=>x=7`

18 tháng 4 2023

A = |\(x\) + 5| + 2023

|\(x\) + 5| ≥ 0 ⇒| \(x\) + 5| + 2023 ≥ 2023⇒ A(min) = 2023 xảy ra khi \(x\) = -5

B = (\(x+2\))2 - 2023

(\(x\) + 2)2 ≥ 0 ⇒ (\(x\) + 2)2 ≥ - 2023 ⇒ A(min) = -2023  xảy ra khi \(x\) = -2

C = \(x^2\) - 6\(x\) + 20

C = (\(x^2\) - 3\(x\)) - ( 3\(x\) - 9) + 11

C = \(x\)(\(x-3\)) - 3(\(x\) -3) + 11

C = (\(x-3\))(\(x\)-3) + 11

C = (\(x-3\))2 + 11

(\(x\) -3)2 ≥ 0 ⇒ (\(x\) - 3)2 + 11 ≥ 11 vậy C(min) = 11 xảy ra khi \(x=3\)

18 tháng 4 2023

D = \(x^2\) + 10\(x\) - 25

D = \(x^2\) + 5\(x\) + 5\(x\) + 25 - 55

D = (\(x^2\) + 5\(x\)) + (5\(x\) + 25) - 50

D = \(x\)(\(x\) + 5) + 5(\(x\) + 5)  - 50

D = (\(x\) +5)(\(x\) + 5) - 50

D = ( \(x\) + 5)2 - 50

(\(x+5\))2 ≥ 0 ⇒ (\(x\) + 5)2 - 50 ≥ -50 ⇒ D(min) = -50 xảy ra khi \(x\) = -5

 

26 tháng 4 2022
Miug
19 tháng 4 2024

...

16 tháng 1 2023

\(\left(x+3\right)^{2022}+\left(\sqrt{y-2}-1\right)^{2023}=0\)    \(\left(ĐKXĐ: y\ge2\right)\)

Xét \(\left(x+3\right)^{2022}\ge0\forall x\)

\(\Rightarrow\left(\sqrt{y-2}-1\right)^{2023}\le0\)

\(\Leftrightarrow\sqrt{y-2}-1\le0\)

\(\Leftrightarrow\sqrt{y-2}\le1\) 

\(\Leftrightarrow y-2\le1\)

\(\Rightarrow y\le3\)

\(\Rightarrow2\le y\le3\) mà \(y\in Z\)

\(\Rightarrow\left\{{}\begin{matrix}y=2\Leftrightarrow x=-2\\y=3\Leftrightarrow x=-3\end{matrix}\right.\)

Em không nghĩ câu này đúng. Anh giải thích hộ bạn đó với ạ. 

16 tháng 12 2023

olm sẽ hướng dẫn em làm bài này như sau:

Bước 1: em giải phương trình tìm; \(x\); y

Bước 2:  thay\(x;y\) vào P

(\(x-1\))2022 + |y + 1| = 0

Vì (\(x-1\))2022 ≥ 0 ∀ \(x\); |y + 1| ≥ 0  ∀ y

⇒ (\(x\) - 1)2022  + |y + 1| = 0

⇔ \(\left\{{}\begin{matrix}\left(x-1\right)^{2022}=0\\y+1=0\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\) (1) 

Thay (1) vào P ta có:

12023.(-1)2022 : )(2.1- 1)2022 +  2023

=  1 + 2023

= 2024

16 tháng 12 2023

a+b+c=12

7 tháng 4 2023

\(\sqrt{2023-\sqrt{x}}=2023-x\left(ĐK:x\ge0\right)\)

Đặt \(t=\sqrt{x}\left(t\le2023\right)\)

Pt trở thành : \(\sqrt{2023-t}=2023-t^2\)

\(\Leftrightarrow2023-t=\left(2023-t^2\right)^2\)

\(\Leftrightarrow t^4-4046t+4092529=2023-t\)

\(\Leftrightarrow t^4-4045+4090506=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=2023\left(n\right)\\t=2022\left(n\right)\end{matrix}\right.\)

+) Với \(t=2023\Rightarrow x^2=2023\Rightarrow x=\pm17\sqrt{7}\)

+) Với \(t=2022\Rightarrow x^2=2022\Leftrightarrow x=\pm\sqrt{2022}\)

Vì \(x\ge0\) \(\Rightarrow x\in\left\{17\sqrt{7};\sqrt{2022}\right\}\)

Vậy \(S=\left\{17\sqrt{7};\sqrt{2022}\right\}\)

8 tháng 4 2023

tks