rút gọn biểu thức
F=\(\frac{\left(\frac{3}{\sqrt{1+a}}+\sqrt{1-a}\right)}{\left(\frac{3}{\sqrt{1-a^2}}+1\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
b) \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)
\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)
c) ĐK: \(a\ge0;a\ne1\)
\(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)
\(=1-a+a=1\)
mi tích tau tau tích mi xong tau trả lời nka
việt nam nói là làm
\(A=\)\(\frac{\sqrt{a}\left(1-a\right)^2}{1+a}:\left[\left(\frac{1-\sqrt{a}^3}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1+\sqrt{a}^3}{1+\sqrt{a}}-\sqrt{a}\right)\right]\)
\(=\frac{\sqrt{a}\left(1-a\right)^2}{1+a}\)\(:\)\(\left[\left(1+\sqrt{a}+a+\sqrt{a}\right)\left(1-\sqrt{a}+a-\sqrt{a}\right)\right]\)
\(=\frac{\sqrt{a}\left(1-a\right)^2}{1+a}:\)\(\left(1+a+2\sqrt{a}\right)\left(1+a-2\sqrt{a}\right)\)
\(=\frac{\sqrt{a}\left(1-a\right)^2}{\left(1+a\right)\left[\left(1+a\right)^2-\left(2\sqrt{a}\right)^2\right]}\)\(=\frac{\sqrt{a}\left(1-a\right)^2}{\left(a+1\right)\left(1+2a+a^2-4a\right)}\)
\(=\frac{\sqrt{a}\left(1-a\right)^2}{\left(a+1\right)\left(1-a\right)^2}=\frac{\sqrt{q}}{a+1}\)
Không nêu rõ y/c của đề à bạn