K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

-)\(A=1+2^{3^{2012}}\) có là hợp số vì:

\(A=1+2^{3^{2012}}\\ \Leftrightarrow A=1+2^{6036}\\ 1\equiv1\left(mod3\right)\\ 2\equiv2\left(mod3\right)\\ \Rightarrow2^{6036}\equiv2\left(mod3\right)\\ \Rightarrow1+2^{6036}\equiv0\left(mod3\right)\)

=> A là hợp số

22 tháng 9 2016

\(A=1+2^{3^{2012}}\\ \Rightarrow A=1+2^{6036}\\ 1\equiv1\left(mod3\right)\\ 2\equiv2\left(mod3\right)\\ \Rightarrow2^{6036}\equiv2\left(mod3\right)\\ \Rightarrow1+2^{6036}\equiv3\equiv0\left(mod3\right)\)

Vậy A là Hợp số 

9 tháng 8 2019

\(3\equiv-1\left(mod4\right)\Rightarrow3^{2012}\equiv1\left(mod4\right);2^{4k+1}=\left(2^4\right)^k.2=16^k.2\equiv1^k.2\equiv2\left(mod3\right)\Rightarrow A\equiv0\left(mod\right)va:A>3\Rightarrow Alahopso\)

15 tháng 11 2015

1)ta có:

p2=p.p mà p>3 =>p.p chia hết cho p

=>p2 là hợp số

 

31 tháng 12 2019

Giải thích nữa nha

1 tháng 1 2020

\(A=1+2^{3^{2012}}\)

\(\Rightarrow A=1+2^{6036}\)

\(1\equiv1\left(mod3\right)\)

\(2\equiv2\left(mod3\right)\)

\(\Rightarrow2^{6036}\equiv2\left(mod3\right)\)

\(\Rightarrow1+2^{6036}\equiv3\equiv0\left(mod3\right)\)

Vậy A là hợp số

14 tháng 11 2017

Vì 2007 chia hết cho 3

=> 2007 x 2009 x 2011 chia hết cho 3 (1)

Lại có : 2013 chia hết cho 3 

=> 2012 x 2013 chia hết cho 3 (2)

Từ (1) và (2) => A chia hết cho 3

Mà A > 3 => A là hợp sô

k mk nha

14 tháng 11 2017

Đáp án:

Hợp số

A = 2007 x 2009 x 2011 + 2012 x 2013 = 8112528849 có tổng các số bằng 48

Mà 48 chia hết cho 3

Nên A = 2007 x 2009 x 2011 + 2012 x 2013 là hợp số.

14 tháng 12 2016

Bài 1:

Gọi số phải tìm là a ( a ϵ N*)

Ta có: a+42 chia hết cho 130 và 150

=> a + 42 ϵ BC(130;135)

=> a= 1908; 3858; 5808; 7758; 9708

18 tháng 12 2016

thank bạn nha