so sanh: 2!/3!+2!/5!+...+2!/2015! với 2/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5S=1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{2015}{5^{2014}}\Rightarrow4S=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2014}}-\frac{2015}{5^{2015}}\)
Đặt B = \(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2014}}\)
=> 5B = \(5+1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}\)
=> 4B = \(5-\frac{1}{5^{2014}}
2A= 2+2^3+2^4+...+2^2015+2^2016
2A-A=2^2016-1
A=(2^2016-1):2
Vì (2^2016-1):2 bé hơn 2^2016 nên A bé hơn 2^2016
Đặt S = 1+10+102+103+...+102014
10S = 10 + 102 + 103 +.......+ 102015
Ta có : 10S - S = ( 10 + 102 + 103 +.......+102015) - ( 1 +10 + 102 + 103 +........+102014)
9S = 102015 - 1
S = (102015 -1 ) :9
Ta thấy: ( 102015 - 1 ) : 9 < 102015
\(\Rightarrow\) (1+10+102+103+...+102014) < 102015
Ta có :
\(T=\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2016}{2^{2015}}+\frac{2017}{2^{2016}}\)
\(T=1+\frac{3}{1.2^2}+\frac{4}{2.2^2}+\frac{5}{2^2.2^2}+...+\frac{2016}{2^{2013}.2^2}+\frac{2017}{2^{1014}.2^2}\)
\(=1+\frac{1}{2^2}.\left(3+2+\frac{5}{4}+\frac{6}{8}+...+\frac{2016}{x}+\frac{2017}{x}\right)\)
\(=1+\frac{1}{2^2}.\left(3+2+\frac{5}{2^2}+\frac{6}{2^3}+...+\frac{2016}{2^{2013}}+\frac{2017}{2^{2014}}\right)\)
Đến chỗ này chịu!
Oggy bạn ấy trên máy tính bỏ túi là SHIFT + \(x\)-1