Cho biểu thức
A= (\(\dfrac{1}{2+2\sqrt{a}}\) + \(\dfrac{1}{2-2\sqrt{a}}\) - \(\dfrac{a^2+1}{1-a^2}\)) ( 1 + \(\dfrac{1}{a}\))
a) Tìm a để A có nghĩa
b) Chứng minh rằng A không phụ thuộc vào giá trị của A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có \(x=4-2\sqrt{3}=\sqrt{3}^2-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)do \(\sqrt{3}-1>0\)
\(\Rightarrow A=\frac{1}{\sqrt{3}-1-1}=\frac{1}{\sqrt{3}-2}\)
b, Với \(x\ge0;x\ne1\)
\(B=\left(\frac{-3\sqrt{x}}{x\sqrt{x}-1}-\frac{1}{1-\sqrt{x}}\right):\left(1-\frac{x+2}{1+\sqrt{x}+x}\right)\)
\(=\left(\frac{-3\sqrt{x}+x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\left(\frac{x+\sqrt{x}+1-x-2}{x+\sqrt{x}+1}\right)\)
\(=\left(\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}-1}{x+\sqrt{x}+1}\right)\)
\(=\frac{\sqrt{x}-1}{x+\sqrt{x}+1}.\frac{x+\sqrt{x}+1}{\sqrt{x}-1}=1\)
Vậy biểu thức ko phụ thuộc biến x
c, Ta có : \(\frac{2A}{B}\)hay \(\frac{2}{\sqrt{x}-1}\)để biểu thức nhận giá trị nguyên
thì \(\sqrt{x}-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\sqrt{x}-1\) | 1 | -1 | 2 | -2 |
\(\sqrt{x}\) | 2 | 0 | 3 | -1 |
x | 4 | 0 | 9 | vô lí |
\(\left(\sqrt{\dfrac{1+sin\alpha}{1-sin\alpha}}+\sqrt{\dfrac{1-sin\alpha}{1+sin\alpha}}\right).\dfrac{1}{\sqrt{1+tan^2\alpha}}\)
\(=\left(\sqrt{\dfrac{\left(1+sin\alpha\right)^2}{\left(1-sin\alpha\right)\left(1+sin\alpha\right)}}+\sqrt{\dfrac{\left(1-sin\alpha\right)^2}{\left(1+sin\alpha\right)\left(1-sin\alpha\right)}}\right).\dfrac{1}{\sqrt{1+\left(\dfrac{sin\alpha}{cos\alpha}\right)^2}}\)
\(=\left(\sqrt{\dfrac{\left(1+sin\alpha\right)^2}{1-sin^2\alpha}}+\sqrt{\dfrac{\left(1-sin\alpha\right)^2}{1-sin^2\alpha}}\right).\dfrac{1}{\sqrt{\dfrac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}}}\)
\(=\left(\sqrt{\dfrac{\left(1+sin\alpha\right)^2}{cos^2\alpha}}+\sqrt{\dfrac{\left(1-sin\alpha\right)^2}{cos^2\alpha}}\right).\dfrac{1}{\sqrt{\dfrac{1}{cos^2\alpha}}}\)
\(=\left(\dfrac{1+sin\alpha}{cos\alpha}+\dfrac{1-sin\alpha}{cos\alpha}\right).\dfrac{1}{\dfrac{1}{cos\alpha}}=\dfrac{2}{cos\alpha}.cos\alpha=2\)
a ĐKXĐ \(a\ge0,a\ne\dfrac{1}{4},a\ne1\)
\(\Rightarrow P=1+\left(\dfrac{\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}\right)\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
= \(1+\left(\dfrac{\left(-1\right)\left(2\sqrt{a}-1\right)}{\sqrt{a}-1}+\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\cdot\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{2\sqrt{a}-1}\)
= \(1+\left(-1+\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{a+\sqrt{a}+1}\right)\sqrt{a}\)
= \(1-\sqrt{a}+\dfrac{a\sqrt{a}+a}{a+\sqrt{a}+1}\) = \(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)+a\sqrt{a}+a}{a+\sqrt{a}+1}=\dfrac{1-a\sqrt{a}+a\sqrt{a}+a}{a+\sqrt{a}+1}=\dfrac{a+1}{a+\sqrt{a}+1}\)
b Xét hiệu \(P-\dfrac{2}{3}=\dfrac{a+1}{a+\sqrt{a}+1}-\dfrac{2}{3}=\dfrac{3a+3-2a-2\sqrt{a}-2}{a+\sqrt{a}+1}=\dfrac{a-2\sqrt{a}+1}{a+\sqrt{a}+1}=\dfrac{\left(\sqrt{a}-1\right)^2}{a+\sqrt{a}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}>0\) \(\Rightarrow P>\dfrac{2}{3}\)
c Ta có \(P=\dfrac{\sqrt{6}}{\sqrt{6}+1}\Rightarrow\dfrac{a+1}{a+\sqrt{a}+1}=\dfrac{\sqrt{6}}{\sqrt{6}+1}\) \(\Rightarrow\left(a+1\right)\left(\sqrt{6}+1\right)=\sqrt{6}\left(a+\sqrt{a}+1\right)\Leftrightarrow a\sqrt{6}+a+\sqrt{6}+1=a\sqrt{6}+\sqrt{6a}+\sqrt{6}\)
\(\Leftrightarrow a-\sqrt{6a}+1=0\Leftrightarrow a-\sqrt{6a}+\dfrac{6}{4}-\dfrac{2}{4}=0\Leftrightarrow\left(\sqrt{a}-\dfrac{\sqrt{6}}{2}\right)^2=\dfrac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{a}=\dfrac{\sqrt{6}+1}{2}\\\sqrt{a}=\dfrac{1-\sqrt{6}}{2}\left(L\right)\end{matrix}\right.\) (Do \(\sqrt{a}\ge0\)) \(\Rightarrow a=\dfrac{\left(\sqrt{6}+1\right)^2}{4}=\dfrac{7+2\sqrt{6}}{4}\left(TM\right)\)
Vậy...
\(Q=\left(\dfrac{1}{2\left(1+\sqrt{a}\right)}+\dfrac{1}{2\left(1-\sqrt{a}\right)}-\dfrac{a^2+1}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\left(1+a\right)}\right).\dfrac{a+1}{a}\)
\(Q=\dfrac{\left(1-\sqrt{a}\right)\left(1+a\right)+\left(1+\sqrt{a}\right)\left(1+a\right)-2\left(a^2+1\right)}{2\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\left(1+a\right)}.\dfrac{a+1}{a}\)
\(Q=\dfrac{\left(1+a\right)\left(1-\sqrt{a}+1+\sqrt{a}\right)-2a^2-2}{2a\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\)
\(Q=\dfrac{2\left(1+a\right)-2a^2-2}{2a\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\)
\(Q=\dfrac{1+a-a^2-1}{a\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\)
\(Q=\dfrac{a-a^2}{a\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\)
\(Q=\dfrac{a\left(1-a\right)}{a\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\)
\(Q=\dfrac{a\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}{a\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}=1\)
vậy
\(M=\left(\dfrac{1}{2+2\sqrt{a}}+\dfrac{1}{2-\sqrt{a}}-\dfrac{a^2+1}{1-a^2}\right)\left(1+\dfrac{1}{a}\right)\)
\(M=\left(\dfrac{1}{2\left(1+\sqrt{a}\right)}+\dfrac{1}{2\left(1-\sqrt{a}\right)}-\dfrac{a^2+1}{\left(1-a\right)\left(1+a\right)}\right)\left(1+\dfrac{1}{a}\right)\)
\(M=\left(\dfrac{\left(1-\sqrt{a}\right)+\left(1+\sqrt{a}\right)}{2\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\dfrac{a^2+1}{1-a^2}\right)\left(\dfrac{a+1}{a}\right)\)
\(M=\left(\dfrac{1-\sqrt{a}+1+\sqrt{a}}{2\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\dfrac{a^2+1}{1-a^2}\right)\left(\dfrac{a+1}{a}\right)\)
\(M=\left(\dfrac{2}{2\left(1-a\right)}-\dfrac{a^2+1}{1-a^2}\right)\left(\dfrac{a+1}{a}\right)\)
\(M=\left(\dfrac{1}{1-a}-\dfrac{a^2+1}{1-a^2}\right)\left(\dfrac{a+1}{a}\right)\)
\(M=\left(\dfrac{1+a-a^2-1}{\left(1-a\right)\left(1+a\right)}\right)\left(\dfrac{a+1}{a}\right)\)
\(M=\dfrac{a-a^2}{a\left(1-a\right)}\)
\(M=\dfrac{a\left(1-a\right)}{a\left(1-a\right)}=1\)
--> giá trị của M ko phụ thuộc vào A
a) Q\(=\left(\dfrac{1}{2+2\sqrt{a}}+\dfrac{1}{2-2\sqrt{a}}-\dfrac{a^2+1}{1-a^2}\right).\left(1+\dfrac{1}{a}\right)\) tồn tại :
\(\Leftrightarrow\left\{{}\begin{matrix}a\ge0\\2-2\sqrt{a}\ne0\\1-a^2\ne0\\a\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)
\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
Thay \(x=6-2\sqrt{5}\) vào A, ta được:
\(A=\dfrac{\sqrt{5}-1-1}{\sqrt{5}-1+1}=\dfrac{\sqrt{5}-2}{\sqrt{5}}=\dfrac{5-2\sqrt{5}}{5}\)
b: Để \(A< \dfrac{1}{2}\) thì \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{1}{2}< 0\)
\(\Leftrightarrow2\sqrt{x}-2-\sqrt{x}-1< 0\)
\(\Leftrightarrow x< 9\)
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)
\(A=\dfrac{2}{\sqrt{ab}}:\left(\dfrac{\sqrt{a}-\sqrt{b}}{\sqrt{ab}}\right)^2-\dfrac{a+b}{\left(\sqrt{a}-b\right)^2}\)
\(=\dfrac{2}{\sqrt{ab}}.\dfrac{ab}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\dfrac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
\(=\dfrac{2\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\dfrac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
\(==\dfrac{-\left(a-2\sqrt{ab}+b\right)}{\left(\sqrt{a}-\sqrt{b}\right)^2}=\dfrac{-\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}=-1\)
a) Vì khi a>0 và \(a\notin\left\{4;1\right\}\) thì \(\left\{{}\begin{matrix}\sqrt{a}-1\ne0\\\sqrt{a}\ne0\\\sqrt{a}-2\ne0\end{matrix}\right.\)
nên Q xác định
b) Ta có: \(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
Để Q dương thì \(\sqrt{a}-2>0\)
\(\Leftrightarrow a>4\)
Kết hợp ĐKXĐ, ta được: a>4
a) A có nghĩa khi: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)
b) \(A=\left(\dfrac{1}{2+2\sqrt{a}}+\dfrac{1}{2-2\sqrt{a}}-\dfrac{a^2+1}{1-a^2}\right)\left(1+\dfrac{1}{a}\right)\)
\(A=\left(\dfrac{1}{2\left(1+\sqrt{a}\right)}+\dfrac{1}{2\left(1-\sqrt{a}\right)}-\dfrac{a^2+1}{1-a^2}\right)\left(\dfrac{a}{a}+\dfrac{1}{a}\right)\)
\(A=\left(\dfrac{1-\sqrt{a}}{2\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)}+\dfrac{1+\sqrt{a}}{2\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)}-\dfrac{a^2+1}{1-a^2}\right)\left(\dfrac{a+1}{a}\right)\)
\(A=\left(\dfrac{1-\sqrt{a}+1+\sqrt{a}}{2\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)}-\dfrac{a^2+1}{1-a^2}\right)\left(\dfrac{a+1}{a}\right)\)
\(A=\left(\dfrac{-2}{2\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)}-\dfrac{a^2+1}{1-a^2}\right)\cdot\dfrac{a+1}{a}\)
\(A=\left(\dfrac{2}{1-a}-\dfrac{a^2+1}{1-a^2}\right)\cdot\dfrac{a+1}{a}\)
\(A=\left(\dfrac{1+a}{\left(1+a\right)\left(1-a\right)}-\dfrac{a^2+1}{\left(1-a\right)\left(1+a\right)}\right)\cdot\dfrac{a+1}{a}\)
\(A=\left(\dfrac{1+a-a^2-1}{\left(1+a\right)\left(1-a\right)}\right)\cdot\dfrac{a+1}{a}\)
\(A=\dfrac{a-a^2}{\left(1+a\right)\left(1-a\right)}\cdot\dfrac{a+1}{a}\)
\(A=\dfrac{a\left(1-a\right)}{\left(1+a\right)\left(1-a\right)}\cdot\dfrac{a+1}{a}\)
\(A=\dfrac{a}{1+a}\cdot\dfrac{a+1}{a}\)
\(A=\dfrac{a\left(a+1\right)}{a\left(a+1\right)}\)
\(A=1\)
Vậy giá trị của A không phụ thuộc và biến
a: ĐKXĐ: a>0; a<>1
b: \(A=\left(\dfrac{1-\sqrt{a}+1+\sqrt{a}}{2\left(1-a\right)}+\dfrac{a^2+1}{a^2-1}\right)\cdot\dfrac{a+1}{a}\)
\(=\left(\dfrac{-2}{2\left(a-1\right)}+\dfrac{a^2+1}{a^2-1}\right)\cdot\dfrac{a+1}{a}\)
\(=\dfrac{-a-1+a^2+1}{\left(a-1\right)\left(a+1\right)}\cdot\dfrac{a+1}{a}\)
\(=\dfrac{a\left(a-1\right)}{a\left(a-1\right)}=1\)