chứng minh rằng : \(38^n+1⋮39\) với mọi n là số lẻ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: n lẻ
=> n2 lẻ
=> n2 + n chẵn
=> n2 + n + 2 chẵn
Mà 1 lẻ
=> n2 + n + 2 + 1 lẻ
TH2: n chẵn
=> n2 chãn
=> n2 + n chẵn
=> n2 + n + 2 chẵn
Mà 1 lẻ
=> n2 + n + 2 + 1 le
KL: n2 + n + 2 + 1 luôn lẻ với mọi số tự nhiên n (Đpcm)
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
\(n^2+n+1=n\left(n+1\right)+1\)
có \(n\left(n+1\right)\)là tích hai số tự nhiên liên tiếp nên \(n\left(n+1\right)\)là số chẵn
Do đó \(n\left(n+1\right)+1\)là số lẻ.
Ta có đpcm.
Hôm nay olm.vn sẽ hướng dẫn các em giải dạng toán lớp 8 nâng cao chuyên đề chứng minh một tổng chia hết cho một số, cấu trúc đề thi hsg, thi chuyên. Bằng phương pháp gián tiếp quy nạp toán học.
Bước 1: Thông qua dư liệu đề bài, đưa về một yêu cầu mới tương đương với yêu cầu của đề bài, mà sau đó ta có thể dùng phương pháp quy nạp để chứng minh.
Bước 2: dùng phương pháp quy nạp để chứng minh
Bước 3: kết luận
38n + 1 ⋮ 39 ( ∀ n lẻ); n lẻ ⇒ n = 2d + 1 ; d \(\in\) N
như vậy cm 38n + 1 ⋮ 39 \(\forall\) n lẻ nghĩa là cm : 382d + 1+ 1⋮ 39 ∀ d \(\in\) N
Ta có với d = 1 thì 382d+1 + 1 = 383 + 1 = 54873 ⋮ 39 (đúng)
Giả sử biểu thức đúng với d = k tức là: 382k+1 + 1 ⋮ 39
Ta cần chứng minh: biểu thức đúng với d = k + 1
Tức là chứng minh: 382(k+1)+1 + 1 ⋮ 39
Thật vậy ta có: 382(k+1)+1 + 1 = 382k+3 + 1 = 382k+1. 382 + 1
Vì 382k+1 + 1 ⋮ 39
⇒ 382k+1 \(\equiv\) -1 (mod 39) (1)
382 \(\equiv\) 1 (mod 39) (2)
1 \(\equiv\) 1 (mod 39 ) (3)
Từ (1); (2); (3) ta có: 382k+1.382 + 1 \(\equiv\) (-1).1 + 1 (mod 39)
⇒ 382k+1.382 + 1 \(\equiv\) 0 (mod 39 )
⇒ 382k+1.382 + 1 ⋮ 39
Vậy : 382d+1 + 1 ⋮ 39 ∀ d \(\in\) N hay 38n + 1 ⋮ 39 với \(\forall\) n lẻ (đpcm)
Cũng có thể CM bằng cách sử dụng t/c của hằng đẳng thức :
TQ : \(a^n+b^n⋮a+b\) ( a,b là các số nguyên , \(a\ne-b\) , n lẻ )
Ta có : \(38^n+1=38^n+1^n⋮38+1=39\left(đpcm\right)\)