K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2017

 có 3 cách chon cách nào thì chọn

 đặt BC=a ---> AD=a/2. Vì G là giao điểm các đường trung tuyến AD,BE nên DG=AD/3 =a/6 và AG=2GD=a/3 
Áp dụng Pitago cho tg ABG : BG^2= AB^2 -AG^2 = 6 -(a/3)^2 --> BG^2= 6 -(a^2)/9 (*) 
Áp dụng Pitago cho tg BDG: BG^2= BD^2-DG^2 = (a/2)^2 -(a/6)^2 = (2/9).(a^2) (**) 
So sánh (*) và (**) ta có BG^2 = 6 -(a^2)/9 = (2/9).(a^2) --> 6= (a^2)/9 + (2/9). (a^2) ---> a^2 =18 --> a=√18 =3√2

cách 2

Ta có góc BEA = góc DAB = góc DBA 
=> tam giác BAE đồng dạng tam giác CAB 
=> AC/AB = AB/AE 
=> AC .AE = 6 <=> AC^2 = 12 ( AE = 1/2 AC) 

Pytago : 
BC^2 = AC^2 + BC^2 = 24 
=> BC = 3 căn2

Cách 3

Ta có góc BEA = góc DAB = góc DBA 
=> tam giác BAE đồng dạng tam giác CAB 
=> AC/AB = AB/AE 
=> AC .AE = 6 <=> AC^2 = 12 ( AE = 1/2 AC) 

Pytago : 
BC^2 = AC^2 + BC^2 = 24 
=> BC = 3 căn2 
Tung 11A2 · 6 năm trước

Không biết đúng ko

22 tháng 6 2018

Đán án B

Dê có:

=> Chọn phương án B

NV
6 tháng 7 2021

\(\dfrac{V_{SABH}}{V_{SABC}}=\dfrac{SH}{SC}=\left(\dfrac{SA}{SC}\right)^2\Rightarrow V_{SABN}=\left(\dfrac{SA}{SC}\right)^2.V_{SABC}\)

\(AC^2=AB^2+BC^2=2AB^2=2a^2\)

\(SC=\sqrt{SA^2+AC^2}=\sqrt{a^2+2a^2}=a\sqrt{3}\)

\(\Rightarrow V_{SABH}=\left(\dfrac{a}{a\sqrt{3}}\right)^2.\dfrac{1}{3}.SA.AB^2=\dfrac{a^3}{9}\)

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

Hình vẽ:

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

Lời giải:

Chuyển $S_{ABC}=x$. Tính $BD.CE$ theo $x$

Đặt $AB=c; BC=a; CA=b$.

Theo tính chất tia phân giác:

$\frac{AD}{DC}=\frac{c}{a}\Rightarrow \frac{AD}{b}=\frac{c}{c+a}$

$\Rightarrow AD=\frac{bc}{c+a}$
Tương tự:

$AE=\frac{bc}{a+b}$

Áp dụng định lý Pitago:

$BD^2=c^2+(\frac{bc}{a+c})^2=c^2[1+\frac{b^2}{(a+c)^2}]$

$=c^2.\frac{(a+c)^2+b^2}{(a+c)^2}=c^2.\frac{a^2+b^2+c^2+2ac}{(a+c)^2}$
$=c^2.\frac{2a^2+2ac}{(a+c)^2}=\frac{2ac^2}{a+c}$

Tương tự:

$CE^2=\frac{2ab^2}{a+b}$

Do đó:

$BD^2.CE^2=\frac{4a^2b^2c^2}{(a+c)(a+b)}$

$BD.CE=\frac{2abc}{\sqrt{(a+b)(a+c)}}=\frac{4xa}{\sqrt{(a+b)(a+c)}}$

Như bạn thấy thì $BD.CE$ không tính được riêng theo $S_{ABC}$ mà vẫn bị ảnh hưởng bởi $AB,AC$