tính 4Ccho C=1+4+...+4^6
chứng minhA={47-1}:3
ai làm xong nhanh nhất mình tích cho nhé chiều mình đi học rồi giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tính tổng S = 1 + 3 + 3^2 + ... + 3^2006, ta sử dụng công thức tổng của cấp số nhân:
S = (3^(2007) - 1) / (3 - 1)
= (3^(2007) - 1) / 2
Để chứng minh 3B = (3^(2007) - 1)/2, ta thay B = S vào:
3B = 3 * (3^(2007) - 1) / 2
= (3^(2008) - 3)/2
= (3^(2008) - 1 - 2)/2
= (3^(2008) - 1)/2 - 1/2
= (3^(2007) - 1)/2 - 1/2
= (3^(2007) - 1) / 2
Do đó ta đã chứng minh được 3B = (3^(2007) - 1)/2.
Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}\)
=> A < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)
=> A < 1 - \(\frac{1}{99}\)= 98/99 < 1
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}\)< 1
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}\)
Ta có : \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{99^2}< \frac{1}{98.99}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)
\(\Rightarrow A< 1-\frac{1}{99}\)
\(\Rightarrow A< 1\left(Đpcm\right)\)
Chúc bạn học tốt !!!
=(1-2)-(3-4)+(5-6)-(7-8)+...+(2021-2022)-2023
=(-1)-(-1)+(-1)-...+(-1)-2023
=0-2023
=-2023
M = \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^3+...+\left(\frac{1}{5}\right)^{^{^{ }}50}\)
=> 5M = 1 + \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{49}\)
=> 5M - M = ( 1 + \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{49}\)) - ( \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^3+...+\left(\frac{1}{5}\right)^{^{^{ }}50}\))
4M = 1 - \(\left(\frac{1}{5}\right)^{50}\)
=> M = \(\frac{1-\left(\frac{1}{5}\right)^{50}}{4}\)< \(\frac{1}{4}\)
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\)+ \(\dfrac{1}{32}\)+\(\dfrac{1}{64}\)+\(\dfrac{1}{128}\)
A\(\times\) 2 = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\)+ \(\dfrac{1}{32}\)+ \(\dfrac{1}{64}\)
A \(\times\) 2 - A = 1 - \(\dfrac{1}{128}\)
A\(\times\)(2-1) = \(\dfrac{128-1}{128}\)
A = \(\dfrac{127}{128}\)
Gọi \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\) là B
\(B=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\)
\(2\cdot B=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{12}+\dfrac{1}{32}+\dfrac{1}{64}\)
\(2\cdot B-B=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{12}+\dfrac{1}{32}+\dfrac{1}{64}-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\right)\)
\(B=1+\left(\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+.....+\dfrac{1}{64}-\dfrac{1}{64}\right)-\dfrac{1}{128}\)
\(B=1+0-\dfrac{1}{128}\)
\(B=1-\dfrac{1}{128}\)
\(B=\dfrac{128}{128}-\dfrac{1}{128}\)
\(B=\dfrac{127}{128}\)
Chiều rộng hcn đó là : 26 × 1/4 =6, 5 m
Diện tích mảnh đất là 26 . 6,5 = 169 m2
B) Diện tích còn lại là : 169 - 62, 5 = 106,5 m
A diện tích làm nhà là 62,5 rùi nhe e
Nhớ k chị như e hứa ....
$C=1+4+...+4^{6}$
$4C=4+4^{2}+...+4^{7}$
$4C-C=4+4^{2}+...+4^{7}-1-4-...-4^{6}$
$3C=4^{7}-1$
$C=\dfrac{4^{7}-1}{3}$
Để tính tổng S = 1 + 4 + 4^2 + ... + 4^6, ta có thể sử dụng công thức tổng của cấp số nhân:
S = (a * (r^n - 1)) / (r - 1)
Trong đó:
- a là số hạng đầu tiên của dãy (a = 1)
- r là công bội của dãy (r = 4)
- n là số lượng số hạng trong dãy (n = 6)
Áp dụng vào bài toán, ta có:
S = (1 * (4^6 - 1)) / (4 - 1)
= (4^6 - 1) / 3
Để chứng minh A = {(4^7 - 1) : 3}, ta cần chứng minh rằng S = (4^7 - 1) : 3.
Ta có:
(4^7 - 1) : 3 = (4^7 - 1) / 3
Để chứng minh hai biểu thức trên bằng nhau, ta sẽ chứng minh rằng (4^7 - 1) / 3 = (4^6 - 1) / 3.
Ta có:
(4^7 - 1) / 3 = (4^6 * 4 - 1) / 3
= (4^6 * 4 - 1 * 4^0) / 3
= (4^6 * 4 - 4^6) / 3
= 4^6 * (4 - 1) / 3
= (4^6 - 1) / 3
Vậy ta đã chứng minh được A = {(4^7 - 1) : 3}.