Cho \(p\) và \(2p+1\) là số nguyên tố lớn hơn \(3\). Chứng minh rằng \(4p+1\) là hợp số.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $p$ là số nguyên tố lớn hơn $3$ nên $p$ không chia hết cho 3. Nghĩa là $p$ chia $3$ dư $1$ hoặc $2$.
Nếu $p$ chia $3$ dư $1$ thì $2p+1=2(3k+1)+1=6k+3=3(2k+1)\vdots 3$. Mà $2p+1>3$ với mọi $p>3$ nên $2p+1$ không là snt (trái với đề)
$\Rightarrow p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k\in\mathbb{N}$
$\Rightarrow 4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. Mà $4p+1>3$ nên $4p+1$ là hợp số.
Vì p là số nguyên tố lớn hơn 3 nên \(p=3k+1\) hoặc \(p=3k+2\) \(\left(k\inℕ^∗\right)\)
Nếu \(p=k+1\) thì \(2p+1=2.\left(3k+1\right)+1=6k+3\in3\) và \(6k+3>3\)
\(\Leftrightarrow2p+1\) là hợp số \(\left(loại\right)\)
Nếu \(p=3k+2\) . Khi đó \(4p+1=4.\left(3k+2\right)=1=12k+9\in3\)
Và \(12k+9>3\) nên là hợp số \(\left(nhận\right)\)
P là số nguyên tố > 3
=> p =3k+1 ; 3k+2 (k\(\in\)N*)
Xét p =3k+1
=> 2.p+1
= 2.(3k+1)+1
= 6k+2+1 = 6k+3= 3.(2k+1) (là hợp số , loại )
=> p = 3k+2
Xét p =3k+2
=> 4p+1
= 4.(3k+2)+1
= 12k+8+1
= 12k+9= 3.(4k+3) (là hợp số)
Vậy 4p+1 là hợp số
Vì p là SNT >3\(\Rightarrow p\)có dạng 3k+1
hoặc 3k+2 ( k\(\in\)N*)
+) Với \(p=3k+2\Rightarrow4p+1=4.\left(3k+2\right)+1=12k+8+1=12k+9=3\left(4k+3\right)⋮3\)
Do k\(\in\)N*\(\Rightarrow4k+3>0\)
\(\Rightarrow3\left(4k+3\right)\)là hợp số
\(\Rightarrow3k+2\)( loại)
+) Với \(p=3k+1\Rightarrow4p+1=4.\left(3k+1\right)+1=12k+4+1=12k+5\)( là số nguyên tố)
\(\Rightarrow2p+1=2\left(3k+1\right)+1=6k+2+1=6k+3=3\left(2k+1\right)⋮3\)
Do k\(\in\)N*\(\Rightarrow3\left(2k+1\right)>0\)
Theo đề ra: p là số nguyên tố lớn hơn 3 => p không chia hết cho 3
=> p = 3k + 1 hoặc p = 3k + 2
* Với p = 3k + 1 thì:
2p + 1 = 2 . ( 3k + 1 ) + 1 = 6k + 2 + 1 = 6k + 3 = 3 . ( 2k + 1 )
=> 2p + 1 chia hết cho 3
Ta có: 2p + 1 > 3
=> 2p + 1 là hợp số ( loại )
* Với p = 3k + 2 thì:
4p + 1 = 4 . ( 3k + 2 ) + 1 = 12k + 8 + 1 = 12k + 9 = 3 . ( 4k + 3 )
=> 4p + 1 chia hết cho 3
Ta có: 4p + 1 > 3
=> 4p + 1 là hợp số
Vậy ...
vì p là snt >3 suy ra p chỉ có hai dạng 3k+1 và 3k+2
th1 : nếu p =3k+1 thì 2p+1=2(3k+1)+1=6k+3(Vì 6k+3>3, và 6k+3 chia hết cho 3 nên 2k+1 là hợp số)
th2 : nếu p =3k+2 thì 4p+1=4(3k+2)+1=12k+9 ( ..........tự chứng minh.....
Vạy nếu p là..........................
Số nguyên tố lớn hơn 3 có dạng:3k+1,3k+2(k\(\in\)N*)
Với p=3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3(trái với giả thiếu)
Với p=3k+2 thì 4p+1=4(3k+2)+1=12k+9 chia hết cho 3,là hợp số
Vậy nếu p và 2p+1 là các số nguyên tố lớn hơn 3 thì 4p+1 là hợp số(đpcm)
Vì P là số nguyên tố lớn hơn 3 nên P có dạng 3k+1 hoặc 3k+2( K \(\ge\) 1)
Với P=3k+1
Khi đó 2P+1 = 2(3k+1) +1 = 6k+ 3 luôn chia hết cho 3 với mọi k \(\ge\) 1( => 2P+1 là hợp số, trái với đề bài)
=> Số nguyên tố P có dạng 3k+ 2
Ta có: 4P +1= 4(3k+2)+1= 12k +9 luôn chia hết cho 3 với mọi k\(\ge\) 1 mà 4P +1 luôn lớn hơn 3
Vậy 4P+1 là hợp số nếu P và 2P+1 là các số nguyên tố lớn hơn 3
A , p là ; snt lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
do đó 4p + 1 là hợp số ( đpcm)
Lời giải:
Vì $p$ là số nguyên tố lớn hơn $3$ nên $(p,3)=1$. Khi đó $p$ có dạng $3k+1$ hoặc $3k+2$ với $k$ tự nhiên.
Nếu $p=3k+1$ thì: $2p+1=2(3k+1)+1=6k+3\vdots 3$. Mà $2p+1>3$ nên không thể là số nguyên tố (trái với giả thiết - loại)
Do đó $p=3k+2$.
Khi đó: $4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. Mà $4p+1>3$ nên $4p+1$ là hợp số (đpcm)