tìm giá trị nhỏ nhất của biểu thức
a=/x-2001/ + /x-1/
chú thích /.../là giá trị tuyệt đối
giải thích kĩ ra nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm giá trị nhỏ nhất của biểu thức: A = giá trị tuyệt đối của x- 2001 + giá trị tuyệt đối của x - 1.
|x-2001|+|x-1|=|x-2001|+|1-x|
BĐT gttđ:|a+b| > |a+b|
áp dụng:=>|x-2001|+|1-x| > |(x-2001)+(1-x)|=2000
=>Amin=2000
dấu "=" xảy ra<=>(x-2001)(x-1)>0 tức 1<x<2000
\(A=x^2+14\)
Ta có: \(x^2\ge0\forall x\in R\)
\(\Rightarrow A=x^2+14\le14\)
Dấu " = " xảy ra khi \(x=0\)
Khi đó: \(A=0+14=14\)
Vậy \(x=0\)khi đạt \(GTNN=14\)
\(B=\left(x+1\right)^2-12\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\in R\)
\(\Rightarrow B=\left(x+1\right)^2-12\ge-12\)
Dấu " =" xảy ra khi \(\left(x+1\right)^2=0\Rightarrow x+1=0\Rightarrow x=-1\)
Vậy \(x=-1\)khi đạt \(GTNN=-12\)
\(C=\left|x-5\right|+15\)
Ta có: \(\left|x-5\right|\le0\forall x\in R\)
\(\Rightarrow C=\left|x-5\right|+15\ge15\)
Dấu " = " xảy ra khi \(\left|x-5\right|=0\Rightarrow x=5\)
Vậy \(x=5\)khi đạt \(GTNN=15\)
\(D=\left|x-2\right|+\left|y+5\right|+19\)
Ta có: \(\left|x-2\right|\ge0\forall x\in R\)
\(\left|y+5\right|\ge0\forall y\in R\)
\(\Rightarrow D=\left|x-2\right|+\left|y+5\right|+19\ge19\)
Dấu " =" xảy ra khi \(\hept{\begin{cases}\left|x-2\right|=0\\\left|y+5\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=-5\end{cases}}}\)
Vậy \(x=2;y=-5\)khi đạt \(GTNN=19\)
hok tốt!!
\(A=\left|x-2001\right|+\left|x-1\right|\)
Xét \(\left|x-2001\right|=0\Rightarrow x=2001\)
\(\Rightarrow A=2000\)
Xét \(x-1=0\Rightarrow x=1\)
\(\Rightarrow A=2000\)
Vậy \(MinA=2000\) tại \(x=1\) hoặc \(x=2001\)
a=/x-2001/+/x-1/
do/x-2001/lớn hơn hoặc bằng 0
/x-1/ lớn hơn hoặc bằng 0
nên suy ra /x-2001/+/x-1/ lớn hoặc bằng 0
/x-2001/+/x-1/ đạt giá trị nhỏ nhất là 0
khii\(\hept{\begin{cases}\frac{x-2001=0}{x-1=0}&&\end{cases}}\)
suy ra \(\hept{\begin{cases}x=2001\\x=1\end{cases}}\)
Vậy ................
1, Ta có: \(\left|x-2\right|\ge0\)
=>\(B=\left|x-2\right|+34\ge34\)
Dấu "=" xảy ra khi x=2
Vậy GTNN của B=34 khi x=2
2, Ta có: \(\left|x+3\right|\ge0\)
\(\Rightarrow-\left|x+3\right|\le0\)
\(\Rightarrow C=2001-\left|x+3\right|\le2001\)
Dấu "=" xảy ra khi x = -3
Vậy GTLN của C = 2001 khi x=-3
Bạn nên nhớ GTTĐ cuả một số của một số bất kì luôn lớn hơn hoặc bằng 0
Bình phương của một số cũng vậy.
1. a) do |x-3| >= 0 với mọi x
nên (-18 + |x-3| ) >= -18
Vậy GTNN của A là -18. Dấu bằng xảy ra khi x - 3 = 0.
câu này phải là GTLN nhé bạn
b) tương tự x2 >= 0 với mọi giá trị của x
=> -x2 <= 0 với mọi x
nên 14 + (-x2) <= 14 hay B<= 14
Vậy GTLN của B là 14. dấu bằng xảy ra khi x2= 0 hay x = 0
c) (x+1)2 >= 0 với mọi x nên 2(x+1)2 >= 0
suy ra C>= -17
dấu = xảy ra khi x + 1 = 0 hay x = -1
bài 2.
a) |a - 30| >=0 với mọi... nên -|a-30|<= 0
|b + 20| >=0 nên -|b+20|<= 0
vây A <= 0 + 0+ 2011 = 2011
vậy GTLN của A là 2011 khi a-30=0 và b+20 = 0 hay a = 30 và b = -20
b)
c) (x-2)2>=0 nên -(x-2)2<=0
vậy C <= 25 + 0 = 25
dấu =.... khi x - 2 = 0 hay x = 2
Tìm giá trị nhỏ nhất của biểu thức A = \(\dfrac{2021}{lxl-3}\)
Chú thích : lxl là căn bậc hai của x ạ
-có gtln thôi bạn
\(\left|x\right|-3\ge3\Rightarrow A\le\dfrac{2021}{\left|x\right|-3}\)
Dấu ''='' xảy ra khi x = 0
Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$A=|x-2001|+|x-1|=|2001-x|+|x-1|\geq |2001-x+x-1|=2000$
Vậy $A_{\min}=2000$. Giá trị này đạt được khi $(2001-x)(x-1)\geq 0$
$\Leftrightarrow 2001\geq x\geq 1$
Ta có : \(\left|x-2001\right|\ge0\forall x\in R\)
\(\left|x-1\right|\ge0\forall x\in R\)
Nên : \(\left|x-2001\right|+\left|x-1\right|\ge0\forall x\in R\)
=> GTNN của biểu thức là : 0
Mà x ko thể có 2 giá trị
Nên GTNN của biểu thức A là : 2001 - 1 = 2000 khi x \(\in R\)