K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2019

x+y=2

\(\Rightarrow\)x=1; x=0; x=-1; x=-2;...

y=1; y=2; y=3; y=4;...

\(\Rightarrow\)x.y= 1.1=1=1

0.2=0<1

-1.3=-3<1

-2.4=-8<1

.............

\(\Rightarrow\)Nếu x+y=2 thì x.y\(\le\)1

27 tháng 9 2019

Ta có: \(x+y=2\)

\(\Rightarrow x=2-y.\)

Có: \(x.y=\left(2-y\right).y\)

\(\Rightarrow x.y=2y-y^2\)

\(\Rightarrow x.y=-y^2+2y-1+1\)

\(\Rightarrow x.y=-\left(y-1\right)^2+1.\)

\(\left(y-1\right)^2\ge0\) \(\forall y.\)

\(\Rightarrow-\left(y-1\right)^2\le0\) \(\forall y.\)

\(\Rightarrow-\left(y-1\right)^2+1\le1\) \(\forall y.\)

\(\Rightarrow x.y\le1\left(đpcm\right).\)

Chúc bạn học tốt!

7 tháng 10 2017

 x+y=2 
<=> x=2-y(1) 
giả sử x*y≤1 
<=>(2-y)y≤1 
<=>y^2 - 2y +1≥0 
<=> (y-1)^2≥0 
<=>y≥1(2) 
từ (1),(2)=> x*y≤1 
 

7 tháng 10 2017

xy = 1 vì :

1 + 1 = 2

vậy xy là 1 nha      

16 tháng 5 2021

\(a)\)

\(\frac{x^2+y^2+5}{2}\ge x+2y\)

\(\rightarrow\frac{x^2+y^2+5}{2}-x-2y\ge0\)

\(\rightarrow\frac{x^2+y^2-2x-4y+5}{2}\ge0\)

\(\rightarrow\frac{\left(x^2-2x+1\right)+\left(y^2-4y+4\right)}{2}\ge0\)

\(\rightarrow\frac{\left(x-1\right)^2+\left(y-2\right)^2}{2}\ge0\)

\(\rightarrow\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y-2\right)^2\ge0\end{cases}}\)

\(\rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)

\(\rightarrow\frac{\left(x-1\right)^2+\left(y-2\right)^2}{2}\ge0\)

16 tháng 5 2021

b)

Áp dụng bất đẳng thức dạng 1/a + 1/b + 4 / a+b

-> 1/a+1 + 1/b+1 ≥ 4/a+b+1+1

Mà ta có: a+b=1

-> 1/a+1 + 1/b+1 ≥ 4/1+1+1 = 4/3

2 tháng 4 2017

Áp dụng bất đẳng thức cho 2 số dương 2x và 8y ta có:

2x+8y\(\ge\)2\(\sqrt{2x.8y}\)=2\(\sqrt{16xy}\)

Mà x.y=4 => 2x+8y \(\ge\)2\(\sqrt{2x.8y}\)=2\(\sqrt{16.4}\)

=> 2.8=16

Vậy 2x+8y\(\ge\)16

25 tháng 6 2019

a, Với mọi \(x;y\inℚ\)ta có :

\(x\le|x|\)và \(-x\le|x|;y\le|y|\)và \(-y\le|y|\)

\(\Rightarrow x+y\le|x|+|y|\)

    \(-x-y\le|x|+|y|\)

\(\Rightarrow x+y\ge-\left(|x|+|y|\right)\)

\(\Rightarrow-\left(|x|+|y|\right)\le x+y\le|x|+|y|\)

Vậy \(|x+y|\le|x|+|y|\)

Dấu "=" xảy ra khi xy \(\ge\) 0.
 

25 tháng 6 2019

b,

Theo kết quả câu a, ta có :

\(|\left(x-y\right)+y|\le|x-y|+|y|\)

\(\Rightarrow|x|\le|x-y|+|y|\Rightarrow|x|-|y|\le|x-y|\)

Dấu "=" xảy ra khi xy \(\ge\) 0 và   \(|x|\ge|y|\)
 

AH
Akai Haruma
Giáo viên
25 tháng 6 2024

1/

Xét hiệu $(x+1)^2-4x^2=(x+1)^2-(2x)^2=(x+1-2x)(x+1+2x)$

$=(1-x)(3x+1)$
Do $x\in (0;1)$ nên $1-x>0; 3x+1>0$

$\Rightarrow (x+1)^2-4x^2>0\Rightarrow (x+1)^2> 4x^2$

AH
Akai Haruma
Giáo viên
25 tháng 6 2024

2/

Xét hiệu:

$(1+x+y)^2-4(x^2+y^2)=x^2+y^2+1+2x+2y+2xy-4x^2-4y^2$

$=1+2x+2y+2xy-3x^2-3y^2$

$=2x(1-x)+2y(1-y)+1+2xy-x^2-y^2$
Vì $x,y\in (0;1)$ nên: 

$2x(1-x)>0$

$2y(1-y)>0$

$(x-1)(y-1)>0\Rightarrow xy+1> x+y=x.1+y.1> x^2+y^2$

$\Rightarrow 1+xy-x^2-y^2>0$

$\Rightarrow 1+2xy-x^2-y^2>0$

Suy ra: $2x(1-x)+2y(1-y)+1+2xy-x^2-y^2>0$

$\Rightarrow (1+x+y)^2> 4(x^2+y^2)$