cmr nếu a/b < c/d (b,d >0) thì a/b < a+c/b+d < c/d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
b, a/b < c/d => ad < cb
=>ad +ab < bc+ab
=> a(d+b) < b(a+c)
=> a/b < a+c/d+b (1)
* a/b < c/d => ad<cb
=> ad + cd < cb +cd
=> d(a+c) < c(b+d)
=> c/d > a+c/b+d (2)
Từ (1) và (2) => a/b < a+c/b+d < c/d
Vì \(b,d>0\)nên \(bd>0\)
Ta có: \(\frac{a}{b}< \frac{c}{d}\)
\(\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\)
\(\Leftrightarrow ad< bc\)vì \(bd>0\)
Ta có :
\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< ac\Leftrightarrow ab+ad< ab+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)\(\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\)\(\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Vì b>0; d>0 nên b+d>0
Ta có: a/b<c/d =>ad<bc(*)
Thêm ab vào 2 vế (*) , ta có:
ab+ad<ba+bc
a(b+d)<b(a+c)
=>a/b<a+c/b+d(1)
Thêm cd vào 2 vế (*), ta được:
ad+cd<cb+cd
(a+c)d<c(b+d)
=>a+c/b+d<c/d(2)
Từ 1,2 =>a/b<a+c/b+d<c/d (b,d<0)
Câu hỏi của ko ko - Toán lớp 6 - Học toán với OnlineMath
Tham khảo
Giải:
Ta có: \(\frac{a}{b}< \frac{c}{d}\) (1)
\(\Rightarrow ad< bc\)
+) \(ad+ab< bc+ab\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (2)
+) \(ad+cd< bc+cd\)
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\frac{c}{d}>\frac{a+c}{b+d}\) (3)
Từ (1), (2) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ad+ab< bc+ab\Leftrightarrow a\left(d+b\right)< b\left(c+a\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)(1)
\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\)(2)
Từ (1) và (2) suy ra điều phải chứng minh