Cho tam giác ABC, đường phân giác trong AD. CM:\(\frac{\sqrt{2}}{AD}=\frac{1}{AB}+\frac{1}{AC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông tại A,phân giác AD
a,CM √2AD =1AB +1AC
b, Gọi I là giao điểm các đường phân giác của tam giác ABC, biết IB=√5,IC=√10. Tính diện tích tam giác ABC
a) Đặt AB = c; AC = b; AD = d.
Áp dụng công thức tính diện tích tam giác bằng ½ tích hai cạnh nhân sin góc xen giữa ta có:
S ABD = ½.AB.AD.sin BAD = ½.cd.sin 45º = ½cd.1/√2
Tương tự: S ACD = ½bd.1/√2
=> S ABC = S ABD + S ACD = ½cd.1/√2 + ½bd.1/√2 = ½d(b + c)/√2
mà S ABC = ½bc
=> ½d(b + c)/√2 = ½bc
=> (b + c)/bc = √2/d
<=> 1/b + 1/c = √2/d
b,Kẻ CH ⊥ BI và CH cắt BA tại K. Tam giác BCK có BH vừa là phân giác vừa là đường cao Tam giác BCK cân tại B => BH là đường trung tuyến => CH = KH. và KC = 2HC.
Đặt BC = x Ta có: AD = BK - AB = BC - AB = x - AB
Gọi giao điểm của AC và BH là E.
Xét tam giác AEB và tam giác HEC có góc EAB = góc EHC = 90độ và góc AEB = góc HEC (đối đỉnh)
tam giác AEB ~ tam giác HEC(g.g)
Góc HCE = góc ABE.
Góc HCE = góc ABC/2 (1)
Mà Góc ECI = gócACB/2 (2)
Từ (1) và (2) Góc ICH = Góc HCE + Góc ECI = (gócABC + góc ACB)/2 = 90độ/2 = 45độ.
Xét tam giác HIC có góc IHC = 90độ và Góc ICH = 45 độ (góc còn lại chắc chắn = 45 độ)
tam giác HIC vuông cân tại H => HI = HC.
Áp dụng đinh lý Py-ta-go cho tam giác này ta được: 2HI² = IC²
√2.IH = IC hay CH = IC/√2.
CH =HI=√10 /√2
Suy ra BH=HI+IB=√10 /√2+√5
=>BC=√((√10 /√2+√5)²+(√10 /√2)²)
KC = 2CH = 2.√10/√2
Xét tam giác: AKC có góc KAC = 90độ và Áp dụng định lý Py-ta-go ta có: KC² = AK² + AC²
AC² = KC² - AK² hay AC² = (2.√10/√2)² - (x - AB)² (3)
Tương tự đối với tam giác ABC ta có: AC² = BC² - AB² AC² = x² - AB² (4)
Từ (3) và (4) suy ra (2.√10/√2)² - (x - AB)² = x² - AB²
20 - (x² - 2ABx +AB²) = x² - AB²
=>10=x(x-AB)
sau đó tính AB rồi tính AC And S ABC
a/ \(S_{ABD}=\frac{1}{2}AB.AD.sin\widehat{BAD}=AB.AD.\frac{\sqrt{2}}{4}\)
\(S_{ACD}=\frac{1}{2}AC.AD.sin\widehat{CAD}=AC.AD.\frac{\sqrt{2}}{4}\)
\(S_{ABC}=\frac{1}{2}AB.AC\)
Suy ra : \(S_{ABC}=S_{ABD}+S_{ACD}\Leftrightarrow\frac{1}{2}AB.AC=\frac{\sqrt{2}}{4}AD.\left(AB+AC\right)\Rightarrow\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)
b/ Tương tự
Ta có : SABC=SDAB+SDAC
12AB.AC=12AB.AD.sin45o+12AC.AD.sin45o=12AD.sin45o(AB+AC)
Ta có : \(S_{ABC}=S_{DAB}+S_{DAC}\)
\(\frac{1}{2}AB.AC=\frac{1}{2}AB.AD.sin45^o+\frac{1}{2}AC.AD.sin45^o=\frac{1}{2}AD.sin45^o\left(AB+AC\right)\)
\(\Leftrightarrow\frac{AB+AC}{AB.AC}=\frac{\sqrt{2}}{AD}\Leftrightarrow\frac{\sqrt{2}}{AD}=\frac{1}{AB}+\frac{1}{AC}\)
Đặt AB=b, AC=a,AD=d vậy ta CM : 1/c+1/b=\(\sqrt{2}\)/d
Từ D hạ DH vuông AC tại H và DM vuông AB tại M, dễ dàng CM được AHDM là hình vuông. => HD=DM=d.sin45 = \(\frac{d}{\sqrt{2}}\)
Ta có S(ABC) = S(ACD) + S(ABD)
<=> b.c/2 = HD.b/2 + DM.c/2 <=> bc = \(\frac{bd+cd}{\sqrt{2}}\)<=> \(\sqrt{2}\)bc = bd + cd
Chia 2 vế cho b.c.d ta có pt cần CM
Sửa đề: Cho tam giác vuông,.... nhé ! (hình minh họa)
Đặt \(AB=a;AC=b;AD=c\). Kẻ \(DE\) vuông góc \(AB\), \(FD\) vuông góc \(AC\left(E\in AB;F\in AC\right)\)
Ta có: tứ giác \(AFDE\) là hình chữ nhật do \(\widehat{A}=\widehat{E}=\widehat{F}=90^o\), AD phân giác trong của \(\widehat{EAF}\) nên \(AFDE\)là hình vuông. Suy ra
\(DE=DF=\frac{AD\sqrt{2}}{2}=\frac{c\sqrt{2}}{2}\). Ta có:
\(S_{DAB}+S_{DAC}=S_{ABC}\)
\(\Leftrightarrow\frac{1}{2}AB\cdot DE+\frac{1}{2}DF\cdot AC=\frac{1}{2}AC\cdot AB\)
\(\Leftrightarrow\frac{c\sqrt{2}}{2}a+\frac{c\sqrt{2}}{2}b=ab\)
\(\Leftrightarrow\frac{\sqrt{2}}{c}=\frac{1}{a}+\frac{1}{b}\) Hay \(\frac{\sqrt{2}}{AD}=\frac{1}{AB}+\frac{1}{AC}\)
có cho vuông ko nhỉ