K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

may bn giai gap gium mik cam on may bn yeu nhiu😋😋😋😋

21 tháng 2 2020

A B C D M N H

a) \(S_{ABCD}=\frac{\left(3+7\right).4}{2}=20\left(cm^2\right)\)

b) Ta có : MA = MD

                NB = NC

\(\Rightarrow\)MN là đường trung bình của hình thang ABCD

\(\Rightarrow\)MN // BC (1)

Ta có : MD ⊥ BC

            NH ⊥ BC

\(\Rightarrow\)MD // NH (2)

Từ (1) và (2) suy ra : Tứ giác MNHD là hình bình hành

Mà : \(\widehat{MDH}=90^o\)

\(\Rightarrow\)Tứ giác MNHD là hình chữ nhật (dhnb)

Vì M là trung điểm của AD

\(\Rightarrow\)MD = \(\frac{1}{2}\)AD

\(\Rightarrow\)MD = 2 cm

Vì MN là đường trung bình của hình thang ABCD

\(\Rightarrow MN=\frac{3+7}{2}=5cm\)

Vậy \(S_{MNHD}=MD.MN=2.5=10\left(cm^2\right)\)

31 tháng 3 2017

Bạn tự vẽ hình nhé

Xét các tam giác vuông AKM và tam giác vuông CHN có

AM=NC ( bằng 1 nửa đoạn AB=AC)

Góc MAK= góc NCH ( cùng phụ với AMC)

=> \(\Delta AKM=\Delta CHN\)( cạnh huyền - góc nhọn)

=> AK=HC ( 2 cạnh tương ứng)

Ta có NH//AK( quan hệ giữa tính vuông góc và song song) (1)

Có N là trung điểm của cạnh AC (2)

Từ (1) và (2) => NH là đường trung bình của \(\Delta ACK\) 

=>H là trung điểm của KC

b) Theo câu a, ta có AK=HC và KH=HC

=>AK=HC

=> AK2+KH2=AH2

=>2.AK2=16

=>AK2=8

=>AK=KH=\(\sqrt{8}\)

=>KC=2.KH=2.\(\sqrt{8}\)=\(\sqrt{32}\)

Xét tam giác vuông AKC vuông tại K có AC2=AK2+KC2

=>AC2=8+32=40

=>\(AC=AB=\sqrt{40}\)

Diện tích tam giác ABC là

\(\frac{\sqrt{40}.\sqrt{40}}{2}=\frac{40}{2}=20\) cm2

Câu c hình như sai đề

1 tháng 4 2017

Theo cau a ta co:

goc BAK = gocACH va AK = CH

Ta CM duoc tam giac BKA = Tam giac AHC ( c . g . c )

Suy ra goc DKA = goc AHC

Ma tam giac AKH vuong tai A

Suy ra goc AHK = 45 do 

Suy ra goc AHC = 135 do ( ke bu )

Hay goc AKB = 135 do

Ta co goc AKH = 90 do Suy ra goc BKH = 135 do

Hay AKB = 135 do

Ta lai co goc AKH = 90 do Suy ra BKH = 35 do 

Suy ra tam giac BKA = tam gic BKM

goc BHK = goc BAK

Do HE ||  AC ( cung vuong goc AB )

Suy ra goc EHM = goc ACH Va goc BAK = goc ACH

Suy ra BHK = MHE

HM la tia phan giac goc EHB

A B C H D K

A C B H K D