Cho tam giác ABC có diện tích 24 cm2 canh AB = 9 cam ,AC = 12 cam ,Kéo dài AB về phía B đoạn BM = 3 cm ,kéo dài AC về phía C đoạn CN = 3 cm .Nối M với N .Tính diện tích hình tam giác AMN?( các bn giải theo cách lớp 5 hộ mik nhé)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đoạn AM dài:
9 + 3 = 12 (cm)
Đoạn AN dài:
12 + 3 = 15 (cm)
Diện tích hình tam giác AMN là:
15 x 12 : 2 = 90 (cm2)
Đáp số: 90 cm2
Không chắc đâu nha
\(AM=AB+BM=13\left(cm\right)\)
\(AN=AC+CN=16\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}AB.AC.sinA\Rightarrow sinA=\dfrac{2S_{ABC}}{AB.AC}=\dfrac{3}{4}\)
\(\Rightarrow S_{AMN}=\dfrac{1}{2}AM.AN.sinA=\dfrac{1}{2}.13.16.\dfrac{3}{4}=...\)
Xét tg ABC và tg BCM có chung đường cao từ C->AM nên
\(\frac{S_{BCM}}{S_{ABC}}=\frac{BM}{AB}=\frac{3}{9}=\frac{1}{3}\Rightarrow S_{BCM}=\frac{S_{ABC}}{3}\)
\(\Rightarrow S_{ACM}=S_{ABC}+S_{BCM}=S_{ABC}+\frac{S_{ABC}}{3}=\frac{4xS_{ABC}}{3}\)
Xét tg ACM và tg CMN có chung đường cao từ M->AN nên
\(\frac{S_{CMN}}{S_{ACM}}=\frac{CN}{AC}=\frac{3}{12}=\frac{1}{4}\Rightarrow S_{CMN}=\frac{S_{ACM}}{4}=\frac{\frac{4xS_{ABC}}{3}}{4}=\frac{S_{ABC}}{3}\)
\(\Rightarrow S_{AMN}=S_{ABC}+S_{BCM}+S_{CMN}=S_{ABC}+\frac{S_{ABC}}{3}+\frac{S_{ABC}}{3}=\frac{5xS_{ABC}}{3}=\frac{5x15}{3}=25cm^2\)
Chiều cao của tam giác ANM là :
12 + 3 = 15 ( cm )
Độ dài đáy AM là :
9 + 3 = 12 ( cm )
Diện tích tam giác AMN là :
\(\frac{1}{2}\)x 15 x 12 = 90 ( cm\(^2\))
Đáp số : 90 cm\(^2\)
Thank you anh Bonking