K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2017

\(P=\frac{x}{x+1}+\frac{y}{y+1}=2-\frac{1}{x+1}-\frac{1}{y+1}\)

\(\le2-\frac{4}{2+x+y}=2-\frac{4}{2+1}=\frac{2}{3}\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

16 tháng 11 2017

Bạn kia làm đúng rồi^_^

17 tháng 3 2017

P=x/x+1 + y/y+1 + z/z+1=x+1-1/x+1 + y+1-1/y+1 + z+1-1/z+1

=1 - 1/x+1 + 1 - 1/y+1 + 1 - 1/z+1

=3 - (1/x+1 + 1/y+1 + 1/z+1)

Áp dụng bđt cauchy- schwarz dạng engel:

1/x+1 + 1/y+1 + 1/z+1 = 12/x+1 + 12/y+1 + 12/z+1 >/ (1+1+1)2/x+1+y+1+z+1 >/ 9/4 (do x+y+z=1)

=> P </ 3 - 9/4 = 3/4 

maxP=3/4 

24 tháng 1 2016

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{x+y+z+3}=\frac{3}{4}\)

3 tháng 10 2018

sửa đề: z+4>0

3 tháng 10 2018

Đặt a = x + 1 > 0 ; b = y + 1 > 0 ; c = z + 4 > 0

a + b + c = 6

\(A=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)

Theo Bất Đẳng Thức ta có: \(\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}\ge\frac{16}{a+b+c}=\frac{8}{3}\)

\(\Rightarrow A\le\frac{1}{3}\)Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a=b\\a+b=c\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\frac{3}{2}\\c=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}}\)

Vậy MaxA = 1/3 khi \(\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}\)

8 tháng 10 2016

À MÌNH TRẢ LỜI NÈ (NHÁC SUY NGHĨ) TA CÓ X^4+Y^2 LỚN HƠN HOẶC BẰNG 2X^2Y VÀ X^2Y^4 LỚN HƠN HOẶC BẰNG 2XY^2 NÊN KHI ĐỔI THÀNH PHÂN SỐ SẼ LÀ X/X^4+Y^2<HOẶC = X/2X^2Y VÀ X/X^2+Y^4< HOẶC BẰNG X/2XY^2

MÀ XY=1 NÊN: X/2X^2Y=X/2X=1/2

Y/2XY^2=Y/2Y=1/2

NÊN X/X^4+Y^2 +Y/Y^4+X^2 < HOẶC = 1/2+1/2=1

VẬY GTLN CỦA A LÀ 1 KHI X=Y=1