K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Các cạnh kề của \(BD\) là: \(BQ\), \(DN\)

Cạnh đối của cạnh \(BD\) là: \(NQ\)

b) Các đường chéo của tứ giác là: \(BN;\;DQ\)

6 tháng 4 2019

- Xác định các thành phố: Play – Ku , Buôn Ma Thuật, Đà Lạt trên hình 29.2

- Những quốc lộ nối các thành phố này với Thành phố Hồ Chí Minh và các cảng biển của vùng Duyên hải Nam Trung Bộ:

- Quốc lộ 19: Kom Tum - Quy Nhơn.

- Quốc lộ 26: Buôn Ma Thuột - biến Nha Trang.

- Quốc lộ 14 và đường Hồ Chí Minh nối Plây Ku, Buôn Ma Thuột với TP. Hồ Chí Minh.

20 tháng 7 2018
Bài 3 mình làm được rồi, có phải bằng 10cm ko vậy ạ?

ĐỈnh: C, H, R, L

Đường chéo: CR, HL

Cạnh: CH, HR, RL, CL

26 tháng 5 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (α) ∩ (ABC) = MN và MN // AB

Ta có N ∈ (BCD) và Giải sách bài tập Toán 11 | Giải sbt Toán 11

Nên ⇒ (α) ∩ (BCD) = NP và NP // CD

Ta có P ∈ (ABD)

Và Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên ⇒ (α) ∩ (ABD) = PQ và PQ // AB

Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên ⇒ (α) ∩ (ACD) = MQ và MQ // CD

Do đó MN // PQ và NP // MQ, Vậy tứ giác MNPQ là hình bình hành.

b) Ta có: MP ∩ NQ = O. Gọi I là trung điểm của CD.

Trong tam giác ACD có : MQ // CD ⇒ AI cắt MQ tại trung điểm E của MQ.

Trong tam giác ACD có : NP // CD ⇒ BI cắt NP tại trung điểm F của NP.

Vì MNPQ là hình bình hành nên ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

EF // MN ⇒ EF // AB

Trong ΔABI ta có EF // AB suy ra : IO cắt AB tại trung điểm J

⇒ I, O, J thẳng hàng

⇒ O ∈ IJ cố định.

 

Vì M di động trên đoạn AC nên Ochạy trong đoạn IJ .

Vậy tập hợp các điểm O là đoạn IJ.

21 tháng 8 2016

C1 D1 D C A B

21 tháng 8 2016

Xét tứ giác ABCD có cạnh đối diện AD và BC cắt nhau tại O. Gọi D1 và C1 lần lượt là các điểm đối xứng của C và D qua O. Khi đó có :

\(AC_1=AC,BD_1=BD,C_1D_1=CD\)

Áp dụng định lí ta có:

\(ABD_1C_1:AD_1\perp BC_1\Leftrightarrow AB^2+C_1D_1^2=AC^2_1+BD^2_1\)

\(\Rightarrow AD\perp BC\Leftrightarrow AB^2+CD^2=AC^2+BD^2\)