Viết các đa thức sau dưới dạng tích:
a) \(27{x^3} + {y^3}\);
b) \({x^3} - 8{y^3}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(8y^3+1\)
\(=\left(2y\right)^3+1^3\)
\(=\left(2y+1\right)\left(4y^2-2y+1\right)\)
b) \(y^3-8\)
\(=y^3-2^3\)
\(=\left(y-2\right)\left(y^2+2y+4\right)\)
`8y^3 + 1 = (2y+1)(4y^2 - 2y + 1)`
`y^3 -8 =(y-2)(y^2+2y+4)`
a: \(x^3+27=\left(x+3\right)\left(x^2-3x+9\right)\)
b: \(x^3-\dfrac{1}{8}=\left(x-\dfrac{1}{2}\right)\left(x^2+\dfrac{1}{2}x+\dfrac{1}{4}\right)\)
c: \(8x^3+y^3=\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
a) \(\left(x+3\right)\cdot\left(x^2-3x+9\right)\)
b) \(\left(x-\dfrac{1}{2}\right)\cdot\left(x^2+\dfrac{1}{2}x+\dfrac{1}{4}\right)\)
c) \(\left(2x+y\right)\cdot\left(4x^2-2xy+y^2\right)\)
\(a,27-x^3\)
\(=3^3-x^3\)
\(=\left(3-x\right)\left(9+3x+x^2\right)\)
Các câu còn lại lm tương tự nhé.
hok tốt!
a) \(27-x^3=\left(3-x\right)\left(9+3x+x^2\right)\)
b) \(8x^3+0,001=\left(2x+0,1\right)\left(4x^2-0,2x+0,01\right)\)
c) \(\frac{x^3}{125}-\frac{y^3}{27}=\left(\frac{x}{5}-\frac{y}{3}\right)\left(\frac{x^2}{25}+\frac{xy}{15}+\frac{y^2}{9}\right)\)
p/s: chúc bạn học tốt
a: \(\left(x+y+z\right)^2-\left(y+z\right)^2\)
\(=\left(x+y+z-y-z\right)\left(x+y+z+y+z\right)\)
\(=x\left(x+2y+3z\right)\)
b: \(\left(x+3\right)^2+4\left(x+3\right)+4\)
\(=\left(x+3+2\right)^2\)
\(=\left(x+5\right)\left(x+5\right)\)
c: \(25+10\left(x+1\right)+\left(x+1\right)^2\)
\(=\left(x+1+5\right)^2\)
\(=\left(x+6\right)\left(x+6\right)\)
\(27-x^3\)
\(=3^3-x^3\)
\(=\left(3-x\right)\left(9+3x+x^2\right)\)
\(8x^3+0,001\)
\(=\left(2x\right)^3+\left(\dfrac{1}{10}\right)^3\)
\(=\left(2x+\dfrac{1}{10}\right)\left(4x^2-2x\dfrac{1}{10}+\left(\dfrac{1}{10}\right)^2\right)\)
\(=2\left(x+\dfrac{1}{5}\right)\left(4x^2-\dfrac{1}{5}x+\dfrac{1}{100}\right)\)
\(\dfrac{x^3}{125}-\dfrac{y^3}{27}\)
\(=\left(\dfrac{x}{5}\right)^3-\left(\dfrac{y}{3}\right)^3\)
\(=\left(\dfrac{x}{5}-\dfrac{y}{3}\right)\left[\left(\dfrac{x}{5}\right)^2+\dfrac{x}{5}.\dfrac{y}{3}+\left(\dfrac{y}{3}\right)^2\right]\)
\(=\left(\dfrac{x}{5}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{25}+\dfrac{xy}{15}+\dfrac{y^2}{9}\right)\)
b )
Dấu = thứ 3 :
Sửa lại : \(2\left(x+\dfrac{1}{20}\right)\)
a) \(27{x^3} + {y^3} = {\left( {3x} \right)^3} + {y^3} = \left( {3x + y} \right)\left( {9{x^2} - 3xy + {y^2}} \right)\);
b) \({x^3} - 8{y^3} = {x^3} - {\left( {2y} \right)^3} = \left( {x - 2y} \right)\left( {{x^2} + 2xy + 4{y^2}} \right)\).