Chứng tỏ yy'// Bz bằng 2 cách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=\dfrac{x-\sqrt{xy}+y}{x\sqrt{x}+y\sqrt{y}}+\dfrac{x+\sqrt{xy}+y}{x\sqrt{x}-y\sqrt{y}}\)
\(=\dfrac{x-\sqrt{xy}+y}{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}+\dfrac{x+\sqrt{xy}+y}{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}\)
\(=\dfrac{1}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{\sqrt{x}-\sqrt{y}}\)
\(=\dfrac{\sqrt{x}-\sqrt{y}+\sqrt{x}+\sqrt{y}}{x-y}\)
\(=\dfrac{2\sqrt{x}}{x-y}\)
a. Biểu thức không viết được thành tích. Bạn xem lại.
b. $(x-y)a+(x+y)b+(y+z)a+(z-y)b$
$=a(x-y+y+z)+b(x+y+z-y)$
$=a(x+z)+b(x+z)=(x+z)(a+b)$
c. $(x-y)a+(x+y)b+(y+z)a+(z-y)b$
$=a(x-y+y+z)+b(x+y+z-y)=a(x+z)+b(x+z)=(x+z)(a+b)$
d. $(x+y+z)a+(-x-y-z)a+a(x+y)+az$
$=(x+y+z)a-(x+y+z)a+a(x+y+z)=a(x+y+z)$
\(=a^2\left(a-x\right)-y^2\left(a-x\right)=\left(a-x\right)\left(a-y\right)\left(a+y\right)\left(D\right)\)
Ta có:
\(\dfrac{x-y}{x^3+y^3}\cdot A=\dfrac{x^2-2xy+y^2}{x^2-xy+y^2}\left(x\ne\pm y\right)\)
\(\Leftrightarrow\dfrac{x-y}{\left(x+y\right)\left(x^2-xy+y^2\right)}\cdot A=\dfrac{\left(x-y\right)^2}{x^2-xy+y^2}\)
\(\Leftrightarrow A\cdot\left(x-y\right)=\left(x+y\right)\left(x^2-xy+y^2\right)\cdot\dfrac{\left(x-y\right)^2}{x^2-xy+y^2}\)
\(\Leftrightarrow A\cdot\left(x-y\right)=\left(x+y\right)\left(x-y\right)^2\)
\(\Leftrightarrow A=\dfrac{\left(x+y\right)\left(x-y\right)^2}{x-y}\)
\(\Leftrightarrow A=\left(x+y\right)\left(x-y\right)\)
\(\Leftrightarrow A=x^2-y^2\)
Trả lời:
7, 5( x + y )2 + 15( x + y )
= 5( x + y )( x + y + 3 )
9, 7x( y - 4 )2 - ( 4 - y )3
= 7x ( 4 - y )2 - ( 4 - y )
= ( 4 - y )2 ( 7x - 4 + y )
11, ( x + 1 )( y - 2 ) - ( 2 - y )2
= ( x + 1 )( y - 2 ) - ( y - 2 )2
= ( y - 2 )( x + 1 - y + 2 )
= ( y - 2 )( x - y + 3 )
8, 9x ( x - y ) - 10 ( y - x )2
= 9x ( x - y ) - 10 ( x - y )2
= ( x - y )[ ( 9x - 10 ( x - y ) ]
= ( x - y )( 9x - 10x + 10y )
= ( x - y )( 10y - x )
10, ( a - b )2 - ( a + b )( b - a )
= ( b - a )2 - ( a + b )( b - a )
= ( b - a )( b - a - a - b )
= - 2a( b - a )
= 2a ( a - b )
12, 2x ( x - 3 ) + y ( x - 3 ) + ( 3 - x )
= 2x ( x - 3 ) + y ( x - 3 ) - ( x - 3 )
= ( x - 3 )( 2x + y - 1 )
Câu 16: Chọn câu sai.
A. (x + y)2 = (x + y)(x + y)
B. x2 – y2 = (x + y)(x – y)
C. (-x – y)2 = (-x)2 – 2(-x)y + y2
D. (x + y)(x + y) = y2 – x2
Câu 17: Chọn câu đúng
A. (c + d)2 – (a + b)2 = (c + d + a + b)(c + d – a + b)
B. (c – d)2 – (a + b)2 = (c – d + a + b)(c – d – a + b)
C. (a + b + c – d)(a + b – c + d) = (a + b)2 – (c – d)2
D. (c – d)2 – (a – b)2 = (c – d + a – b)(c – d – a – b)
Câu 18: Có bao nhiêu giá trị x thỏa mãn (2x – 1)2 – (5x – 5)2 = 0
A. 0 B. 1 C. 2 D. 3
Câu 19: Có bao nhiêu giá trị x thỏa mãn (2x + 1)2 – 4(x + 3)2 = 0
A. 0 B. 1 C. 2 D. 3
Câu 20:Tìm x biết (x – 6)(x + 6) – (x + 3)2 = 9
A. x = -9 B. x = 9 C. x = 1 D. x = -6
Câu 8: B
a) \(A=\dfrac{x\sqrt{y}+y\sqrt{x}}{x+2\sqrt{xy}+y}\)
\(A=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)^2}\)
\(A=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
b) \(B=\dfrac{x\sqrt{y}-y\sqrt{x}}{x-2\sqrt{xy}+y}\)
\(B=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)^2}\)
\(B=\dfrac{\sqrt{xy}}{\sqrt{x}-\sqrt{y}}\)
c) \(C=\dfrac{3\sqrt{a}-2a-1}{4a-4\sqrt{a}+1}\)
\(C=\dfrac{-\left(2a-3\sqrt{a}+1\right)}{\left(2\sqrt{a}\right)^2-2\sqrt{a}\cdot2\cdot1+1^2}\)
\(C=\dfrac{-\left(\sqrt{a}-1\right)\left(2\sqrt{a}-1\right)}{\left(2\sqrt{a}-1\right)^2}\)
\(C=\dfrac{-\sqrt{a}+1}{2\sqrt{a}-1}\)
d) \(D=\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)
\(D=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}+\dfrac{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}{\sqrt{a}-2}\)
\(D=\sqrt{a}+2-\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\sqrt{a}-2}\)
\(D=\left(\sqrt{a}+2\right)-\left(\sqrt{a}+2\right)\)
\(D=0\)
d) \(\left(a^2+a\right)^2+4\left(a^2+a\right)-12=\left(a^2+a\right)^2+4\left(a^2+a\right)+16-4\)
\(=\left(a^2+a+2\right)^2-4=\left(a^2+a+2-4\right)\left(a^2+a+2+4\right)\)
\(=\left(a^2+a-2\right)\left(a^2+a+6\right)=\left(a-1\right)\left(a+2\right)\left(a^2+a+6\right)\)
a: \(a\left(x-y\right)-b\left(y-x\right)+c\left(x-y\right)\)
\(=a\left(x-y\right)+b\left(x-y\right)+c\left(x-y\right)\)
\(=\left(x-y\right)\left(a+b+c\right)\)
b: \(a^m-a^{m+2}\)
\(=a^m-a^m\cdot a^2\)
\(=a^m\left(1-a^2\right)\)
\(=a^m\left(1-a\right)\left(1+a\right)\)
Ta có:
\(\widehat{ABz}+\widehat{x'Bz}=180^o\) (kề bù)
\(\Leftrightarrow\widehat{ABz}+75^o=180^o\\ \Leftrightarrow\widehat{ABz}=180^o-75^o=105^o\)
Mà \(\widehat{yAx'}=105^o=\widehat{ABz}\)
\(\Rightarrow Ay//Bz\) (2 góc trên bằng nhau ở vị trí so le trong)
hay \(yy'//Bz\) (A nằm trên đoạn \(yy'\))
Cách 2:
Ta có:
\(\widehat{BAy'}+\widehat{yAB}=180^o\) (kề bù)
\(\Leftrightarrow\)\(\widehat{BAy'}=180^o-\widehat{yAB}\)
\(\Leftrightarrow\widehat{BAy'}=180^o-105^o=75^o\)
Mà \(\widehat{x'Bz}=75^o=\widehat{BAy'}\)
\(\Rightarrow Bz//Ay'\) (2 góc trên bằng nhau ở vị trí đồng vị)
hay \(Bz//yy'\) (A nằm trên đoạn \(yy'\))