K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
10 tháng 1

\(a)4{{\rm{x}}^4}{y^6} + 2{{\rm{x}}^4}{y^6} = \left( {4 + 2} \right){x^4}{y^6} = 6{{\rm{x}}^4}{y^6}\)

\(b)3{{\rm{x}}^3}{y^5} - 5{{\rm{x}}^3}{y^5} = \left( {3 - 5} \right){x^3}{y^5} =  - 2{{\rm{x}}^3}{y^5}\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 1

\(a)\dfrac{{3{\rm{x}} + 6}}{{4{\rm{x}} - 8}}.\dfrac{{2{\rm{x}} - 4}}{{x + 2}} = \dfrac{{3\left( {x + 2} \right).2\left( {x - 2} \right)}}{{4.\left( {x - 2} \right).\left( {x + 2} \right)}} = \dfrac{3}{2}\)

\(b)\dfrac{{{x^2} - 36}}{{2{\rm{x}} + 10}}.\dfrac{{x + 5}}{{6 - x}} = \dfrac{{\left( {x - 6} \right)\left( {x + 6} \right)\left( {x + 5} \right)}}{{2\left( {x + 5} \right).\left( { - 1} \right)\left( {x - 6} \right)}} = \dfrac{{x + 6}}{{ - 2}} = \dfrac{{-x- 6}}{{ 2}}\)

\(c)\dfrac{{1 - {y^3}}}{{y + 1}}.\dfrac{{5y + 5}}{{{y^2} + y + 1}} = \dfrac{{\left( {1 - y} \right)\left( {1 + y + {y^2}} \right).5\left( {y + 1} \right)}}{{\left( {y + 1} \right).\left( {{y^2} + y + 1} \right)}} = 5\left( {1 - y} \right)\)

\(d)\dfrac{{x + 2y}}{{4{{\rm{x}}^2} - 4{\rm{x}}y + {y^2}}}.\left( {2{\rm{x}} - y} \right) = \dfrac{{\left( {x + 2y} \right).\left( {2{\rm{x}} - y} \right)}}{{{{\left( {2{\rm{x}} - y} \right)}^2}}} = \dfrac{{x + 2y}}{{2{\rm{x}} - y}}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

\(a)\left( { - \frac{{3{\rm{x}}}}{{5{\rm{x}}{y^2}}}} \right):\left( { - \frac{{5{y^2}}}{{12{\rm{x}}y}}} \right) = \frac{{ - 3{\rm{x}}}}{{5{\rm{x}}{y^2}}}.\frac{{ - 12{\rm{x}}y}}{{5{y^2}}} = \frac{{36{{\rm{x}}^2}y}}{{25{\rm{x}}{y^4}}}\)

b) \(\frac{4{{\text{x}}^{2}}-1}{8{{\text{x}}^{3}}-1}:\frac{4{{\text{x}}^{2}}+4\text{x}+1}{4{{\text{x}}^{2}}+2\text{x}+1}=\frac{4{{\text{x}}^{2}}-1}{8{{\text{x}}^{3}}-1}.\frac{4{{\text{x}}^{2}}+2\text{x}+1}{4{{\text{x}}^{2}}+4\text{x}+1}\)

\(=\frac{\left( 2\text{x}-1 \right)\left( 2\text{x}+1 \right)\left( 4{{\text{x}}^{2}}+2\text{x}+1 \right)}{\left( 2\text{x}-1 \right)\left( 4{{\text{x}}^{2}}+2\text{x}+1 \right){{\left( 2\text{x}+1 \right)}^{2}}}=\frac{1}{2\text{x}+1}\).

HQ
Hà Quang Minh
Giáo viên
10 tháng 1

a) \(9{{\rm{x}}^3}{y^6} + 4{{\rm{x}}^3}{y^6} + 7{{\rm{x}}^3}{y^6} = \left( {9 + 4 + 7} \right){x^3}{y^6} = 20{{\rm{x}}^3}{y^6}\)

b) \(9{{\rm{x}}^5}{y^6} - 14{{\rm{x}}^5}{y^6} + 5{{\rm{x}}^5}{y^6} = \left( {9 - 14 + 5} \right){x^5}{y^6} = 0\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

\(a)\frac{{3 - 2{\rm{x}}}}{{x - 1}} - \frac{{2 + 5{\rm{x}}}}{{x - 1}} = \frac{{3 - 2{\rm{x}} - \left( {2 + 5{\rm{x}}} \right)}}{{x - 1}} = \frac{{3 - 2{\rm{x}} - 2 - 5{\rm{x}}}}{{x - 1}} = \frac{{1 - 7{\rm{x}}}}{{x - 1}}\)

\(b)\frac{1}{{4{{\rm{x}}^2}y}} - \frac{1}{{6{\rm{x}}{y^2}}} = \frac{{3y}}{{12{{\rm{x}}^2}y{}^2}} - \frac{{2{\rm{x}}}}{{12{{\rm{x}}^2}{y^2}}} = \frac{{3y - 2{\rm{x}}}}{{12{{\rm{x}}^2}{y^2}}}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(y' = 2.3{{\rm{x}}^2} - \frac{1}{2}.2{\rm{x}} + 4.1 - 0 = 6{{\rm{x}}^2} - x + 4\).

b) \(y' = \frac{{{{\left( { - 2{\rm{x}} + 3} \right)}^\prime }.\left( {{\rm{x}} - 4} \right) - \left( { - 2{\rm{x}} + 3} \right).{{\left( {{\rm{x}} - 4} \right)}^\prime }}}{{{{\left( {{\rm{x}} - 4} \right)}^2}}}\)

\( = \frac{{ - 2\left( {{\rm{x}} - 4} \right) - \left( { - 2{\rm{x}} + 3} \right).1}}{{{{\left( {{\rm{x}} - 4} \right)}^2}}}\)

\( = \frac{{ - 2{\rm{x}} + 8 + 2{\rm{x}} - 3}}{{{{\left( {{\rm{x}} - 4} \right)}^2}}} = \frac{5}{{{{\left( {{\rm{x}} - 4} \right)}^2}}}\)

c) \(y' = \frac{{{{\left( {{x^2} - 2{\rm{x}} + 3} \right)}^\prime }\left( {{\rm{x}} - 1} \right) - \left( {{x^2} - 2{\rm{x}} + 3} \right){{\left( {{\rm{x}} - 1} \right)}^\prime }}}{{{{\left( {{\rm{x}} - 1} \right)}^2}}}\)

\( = \frac{{\left( {2{\rm{x}} - 2} \right)\left( {{\rm{x}} - 1} \right) - \left( {{x^2} - 2{\rm{x}} + 3} \right).1}}{{{{\left( {{\rm{x}} - 1} \right)}^2}}}\) \( = \frac{{2{{\rm{x}}^2} - 2{\rm{x}} - 2{\rm{x}} + 2 - {x^2} + 2{\rm{x}} - 3}}{{{{\left( {{\rm{x}} - 1} \right)}^2}}}\)

\( = \frac{{{x^2} - 2{\rm{x}} - 1}}{{{{\left( {{\rm{x}} - 1} \right)}^2}}}\)

d) \(y' = {\left( {\sqrt 5 .\sqrt x } \right)^\prime } = \sqrt 5 .\frac{1}{{2\sqrt x }} = \frac{{\sqrt 5 }}{{2\sqrt x }} = \frac{5}{{2\sqrt {5x} }}\).

HQ
Hà Quang Minh
Giáo viên
10 tháng 1

a)

\(\dfrac{{5{\rm{x}} - 4}}{9} + \dfrac{{4{\rm{x}} + 4}}{9} \\= \dfrac{{5{\rm{x}} - 4 + 4{\rm{x}} + 4}}{9} \\= \dfrac{{9{\rm{x}}}}{9} \\= x\)

b)

\(\dfrac{{{x^2}y - 6}}{{2{{\rm{x}}^2}y}} + \dfrac{{6 - x{y^2}}}{{2{{\rm{x}}^2}y}} \\= \dfrac{{{x^2}y - 6 + 6 - x{y^2}}}{{2{{\rm{x}}^2}y}} \\= \dfrac{{{x^2}y - x{y^2}}}{{2{{\rm{x}}^2}y}} \\= \dfrac{{xy\left( {x - y} \right)}}{{2{{\rm{x}}^2}y}} \\= \dfrac{{x - y}}{{2{\rm{x}}}}\)

c)

\(\dfrac{{x + 1}}{{{x^2} - 5{\rm{x}}}} + \dfrac{{x - 18}}{{{x^2} - 5{\rm{x}}}} + \dfrac{{x + 2}}{{{x^2} - 5{\rm{x}}}} \\= \dfrac{{x + 1 + x - 18 + x + 2}}{{{x^2} - 5{\rm{x}}}} \\= \dfrac{{3{\rm{x}} - 15}}{{x\left( {x - 5} \right)}} \\= \dfrac{{3\left( {x - 5} \right)}}{{x\left( {x - 5} \right)}} \\= \dfrac{3}{x}\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 1

d)

\(\dfrac{{7y}}{3} - \dfrac{{7y - 5}}{3} \\= \dfrac{{7y - 7y + 5}}{3} \\= \dfrac{5}{3}\)

e)

\(\dfrac{{4{\rm{x}} - 1}}{{3{\rm{x}}{y^2}}} - \dfrac{{7{\rm{x}} - 1}}{{3{\rm{x}}{y^2}}} \\= \dfrac{{4{\rm{x}} - 1 - 7{\rm{x}} + 1}}{{3{\rm{x}}{y^2}}} \\= \dfrac{{-3{\rm{x}}}}{{3{\rm{x}}{y^2}}} \\= \dfrac{-1}{{{y^2}}}\)

g)

\(\dfrac{{3y - 2{\rm{x}}}}{{x - 2y}} - \dfrac{{x - y}}{{2y - x}} \\= \dfrac{{3y - 2{\rm{x}}}}{{x - 2y}} + \left( { - \dfrac{{x - y}}{{2y - x}}} \right) \\= \dfrac{{3y - 2{\rm{x}}}}{{x - 2y}} + \dfrac{{x - y}}{{x - 2y}} \\= \dfrac{{3y - 2{\rm{x}} + x - y}}{{x - 2y}} \\= \dfrac{{2y - x}}{{ - \left( {2y - x} \right)}} \\=  - 1\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 1

a) Thay x = -1, y = 1 vào đa thức A ta được:

\(\begin{array}{l}A = 4.{\left( { - 1} \right)^6} - 2.{\left( { - 1} \right)^2}{.1^3} - 5.\left( { - 1} \right).1 + 2\\A = 4 - 2 + 5 + 2 = 9\end{array}\)

Vậy A =9 tại x = -1; y = 1

Thay x = -1, y = 1 vào đa thức B ta được:

\(\begin{array}{l}B = 3.{\left( { - 1} \right)^2}{.1^3} + 5.\left( { - 1} \right).1 - 7\\B = 3 - 5 - 7 =  - 9\end{array}\)

Vậy B = -9 tại x = -1; y = 1

b) Ta có:

\(\begin{array}{l}A + B = \left( {4{{\rm{x}}^6} - 2{{\rm{x}}^2}{y^3} - 5{\rm{x}}y + 2} \right) + \left( {3{{\rm{x}}^2}{y^3} + 5{\rm{x}}y - 7} \right)\\ = 4{{\rm{x}}^6} - 2{{\rm{x}}^2}{y^3} - 5{\rm{x}}y + 2 + 3{{\rm{x}}^2}{y^3} + 5{\rm{x}}y - 7\\ = 4{{\rm{x}}^6} + \left( { - 2{{\rm{x}}^2}{y^3} + 3{{\rm{x}}^2}{y^3}} \right) + \left( { - 5{\rm{x}}y + 5{\rm{x}}y} \right) + 2 - 7\\ = 4{{\rm{x}}^6} + {x^2}{y^3} - 5\end{array}\)

\(\begin{array}{l}A - B = \left( {4{{\rm{x}}^6} - 2{{\rm{x}}^2}{y^3} - 5{\rm{x}}y + 2} \right) - \left( {3{{\rm{x}}^2}{y^3} + 5{\rm{x}}y - 7} \right)\\ = 4{{\rm{x}}^6} - 2{{\rm{x}}^2}{y^3} - 5{\rm{x}}y + 2 - 3{{\rm{x}}^2}{y^3} - 5{\rm{x}}y + 7\\ = 4{{\rm{x}}^6} + \left( { - 2{{\rm{x}}^2}{y^3} - 3{{\rm{x}}^2}{y^3}} \right) + \left( { - 5{\rm{x}}y - 5{\rm{x}}y} \right) + 2 + 7\\ = 4{{\rm{x}}^6} - 5{x^2}{y^3} - 10{\rm{x}}y + 9\end{array}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

\(a)\frac{{{x^2} - 3{\rm{x}} + 1}}{{2{{\rm{x}}^2}}} + \frac{{5{\rm{x}} - 1 - {x^2}}}{{2{{\rm{x}}^2}}} = \frac{{{x^2} - 3{\rm{x}} + 1 + 5{\rm{x}} - 1 - {x^2}}}{{2{{\rm{x}}^2}}} = \frac{{2{\rm{x}}}}{{2{{\rm{x}}^2}}}\)

\(b)\frac{y}{{x - y}} + \frac{x}{{x + y}} = \frac{{y\left( {x + y} \right) + x\left( {x - y} \right)}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{xy + {y^2} + {x^2} - xy}}{{{x^2} - {y^2}}} = \frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}}\)

\(c)\frac{x}{{2{\rm{x}} - 6}} + \frac{9}{{2{\rm{x}}\left( {3 - x} \right)}} = \frac{x}{{2\left( {x - 3} \right)}} - \frac{9}{{2{\rm{x}}\left( {x - 3} \right)}} = \frac{{{x^2}}}{{2{\rm{x}}\left( {x - 3} \right)}} - \frac{9}{{2{\rm{x}}\left( {x - 3} \right)}} = \frac{{{x^2} - 9}}{{2{\rm{x}}\left( {x - 3} \right)}} = \frac{{\left( {x - 3} \right)\left( {x + 3} \right)}}{{2{\rm{x}}\left( {x - 3} \right)}} = \frac{{x + 3}}{{2{\rm{x}}}}\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 1

\(\begin{array}{l}a)3{{\rm{x}}^2} - 6{\rm{x}}y + 3{y^2} - 5{\rm{x}} + 5y\\ = \left( {3{{\rm{x}}^2} - 6{\rm{x}}y + 3{y^2}} \right) - \left( {5{\rm{x}} - 5y} \right)\\ = 3\left( {{x^2} - 2{\rm{x}}y + {y^2}} \right) - 5\left( {x - y} \right)\\ = 3{\left( {x - y} \right)^2} - 5\left( {x - y} \right)\\ = \left( {x - y} \right)\left[ {3\left( {x - y} \right) - 5} \right] = \left( {x - y} \right)\left( {3{\rm{x}} - 3y - 5} \right)\end{array}\)

\(\begin{array}{l}b)2{{\rm{x}}^2}y + 4{\rm{x}}{y^2} + 2{y^3} - 8y\\ = 2y\left[ {\left( {{x^2} + 2{\rm{x}}y + {y^2}} \right) - 4} \right]\\ = 2y\left[ {{{\left( {x + y} \right)}^2} - {2^2}} \right]\\ = 2y\left( {x + y + 2} \right)\left( {x + y - 2} \right)\end{array}\)