K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2023

      A =         \(\dfrac{1}{2}\) - \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) - \(\dfrac{1}{2^4}\)+...+ \(\dfrac{1}{2^{99}}\) - \(\dfrac{1}{2^{100}}\)

     2A =   1 - \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) - \(\dfrac{1}{2^3}\) + \(\dfrac{1}{2^3}\)-...-\(\dfrac{1}{2^{99}}\) 

2A + A =   1 - \(\dfrac{1}{2^{100}}\)

3A       = ( 1 - \(\dfrac{1}{2^{100}}\))

   A       = (1 -  \(\dfrac{1}{2^{100}}\)): 3

   A        = \(\dfrac{1}{3}\) - \(\dfrac{1}{3.2^{100}}\)

23 tháng 10 2024

\(\)L1\(\dfrac{ }{ }\) bạn chi cần nhân biểu tgucws với rồi lấy 2 lần biểu thức ấy - đi biểu thức bán đầu

5 tháng 12 2024

Cho mik hỏi cách làm bài này

Tính nhanh 1 1/2x1 1/3 × 11/4×...x 1 1/99×1 1/100

23 tháng 4 2020

??????????????????????????????????????????

23 tháng 3 2020

1. 1 + ( -2) +3 +(-4) + .........+ 19 + (-20)

= -1 + ( -1) +....+(-1)

= -1. 10

= -10

2. 1 – 2 + 3 – 4 + . . . + 99 – 100 

= ( -1) + (-1) +....+(-1)

= -1. 50

= -50

3. 2 – 4 + 6 – 8 + . . . + 48 – 50 

= (-2) + (-2) +....+ (-2)

= -2. 12 + 26

= -24 + 26

= 2

4. – 1 + 3 – 5 + 7 - . . . . + 97 – 99

= 2 + 2 +......+2

= 2.25

= 50

5. 1 + 2 – 3 – 4 + ... + 97 + 98 – 99 - 100

= (1+2-3-4) +......+ ( 97+98-99 -100)

= -4 . (-4).....(-4)

= -4. 25

= -100

1 tháng 12 2024

tại sao câu b lại x50

 

4 tháng 3 2023

A = \(\dfrac{100-(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{99}{100}}\)

Xét các mẫu số của dãy phân số : \(\dfrac{1}{1};\dfrac{1}{2};....;\dfrac{1}{100}\)

ta có dãy số: 1; 2; ....;100

Dãy số trên có số số hạng là: ( 100 - 1) : 1 + 1 = 100 (số)

Tách 100 thành tổng của 100 số 1 rồi nhóm lần lượt 1 với từng phân số thuộc dãy phân số trên khi đó ta có:

A = \(\dfrac{100-(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.....+\dfrac{99}{100}}\)

A = \(\dfrac{(1-1)+(1-\dfrac{1}{2})+(1-\dfrac{1}{3})+....+(1-\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.....+\dfrac{99}{100}}\)

A = \(\dfrac{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+....+\dfrac{99}{100}}\)

A = 1

5 tháng 2 2022

Ta có \(63,1.2-21,3.6=0,9.7.10.1,2-21.3,6\)

\(=6,3.1,2-21.3,6\)

\(=0,9.7.4.3-7.3.0,9.4\)

\(=6,3.1,2-6,3.1,2\)

\(=0\)

\(\Rightarrow\dfrac{\left(1+2+......+100\right).\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+.....+99-100}=\dfrac{\left(1+2+.....+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)0}{1-2+3-4+......+99-100}=0\)

8 tháng 2 2018

ai biết trả lời nhanh giúp mình nhé

7 tháng 4 2016

mk bó tay sorry

456547

9 tháng 1 2021

Bạn nhìn thì cũng không quá khó để nhận ra quy luật trong S

\(\frac{1}{1},\)\(\frac{1+2}{2},\)\(\frac{1+2+3}{3},\)\(\frac{1+2+3+4}{4},\)..., \(\frac{1+2+...+100}{100},\)

Công thức tính tổng \(1+2+3+..+n\)(với \(n\)là số nguyên dương) là \(\frac{n\cdot\left(n+1\right)}{2}\)

Vì vậy mỗi số hạng trong \(S\)có thể rút gọn thành \(\frac{1+2+3+...+n}{n}=\frac{\frac{n\left(n+1\right)}{2}}{n}=\frac{n+1}{2}\)

Do đó

 \(S=\frac{\left(1+1\right)}{2}+\frac{\left(2+1\right)}{2}+\frac{\left(3+1\right)}{2}+..+\frac{\left(100+1\right)}{2}=\frac{1}{2}\left(2+3+4+..+101\right)\)

\(S=\frac{1}{2}\left(\frac{101\cdot102}{2}-1\right)=2575\)

Chúc bạn học tốt!
(P/S : giải thích dòng cuối : Tổng từ 2 tới 101? Lấy tổng từ 1 tới 101 rồi trừ đi 1 nếu không nhớ cách làm của Gauss nha, không thì cứ nhớ câu này "Dĩ đầu cộng vĩ, chiết bán nhân chi" (lấy đầu cộng cuối, chia 2, nhân số số hạng))