Giá trị nhỏ nhất của biểu thức A:
A=\(-2+3\sqrt{x+1}\)
trình bày bài làm cho mk nhé
Bạn nào làm đúng mk tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=0,4\left(3\right)+0,6\left(2\right)\cdot2\frac{1}{2}-\frac{\frac{1}{2}+\frac{1}{3}}{0,5\left(8\right)}:\frac{50}{53}\)
\(A=\frac{13}{30}+\frac{28}{45}\cdot\frac{5}{2}-\frac{3+2}{6}:\frac{53}{90}\cdot\frac{53}{50}\)
\(A=\frac{13}{30}+\frac{14}{9}-\frac{5}{6}\cdot\frac{90}{53}\cdot\frac{53}{50}\)
\(A=\frac{39}{90}+\frac{140}{90}-\frac{2}{3}\)
\(A=\frac{179}{90}-\frac{60}{90}=\frac{119}{90}\)
\(A=1,3\left(2\right)\)
Ta cố bdt \(|a|+|b|\ge|a+b|\), dễ dàng chứng mình bằng bình phương 2 vế. Dấu = sảy ra <=>IaI.IbI=a.b <=> a.b>=0
áp dụng vào từng câu
a)A=Ix+1I+Ix+2I+Ix+3I+I-x-4I+I-x-5I ( vì Ix+4I=I-x=4I, Ix+5I=I-x-5I
A>=I(x+1)+(-x-5)I+I(x+2)+(-x-4)I +Ix+3I=4+2+Ix+3I=6+Ix+3I>=6
Dấu bằng khi (x+1)(-x-5)>=0;(x+2)(-x-4)>=0;Ix+3I=0 =>x=-3
b) LÀm tương tự MinB=18
Dấu = khi (2x+1)(-2x-11)>=0;(2x+3)(-2x-9)>=0;(2x+5)(-2x-7)>=0 <=>-7/2<=x<=-5/2
Tìm giá trị nhỏ nhất biết:
A=x^2+3./y-2/-1
làm nhanh hộ mk, mk cần gấp
làm nhanh + đúng mk sẽ tick cho
Ta có: \(x^2\ge0;3\left|y-2\right|\ge0\)
\(\Rightarrow x^2+3\left|y-2\right|\ge0\)
\(\Rightarrow x^2+3\left|y-2\right|-1\ge-1\)
\(\Rightarrow A\ge-1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2=0\\3\left|y-2\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}}\)
Vậy GTNN của A = -1 khi x = 0 và y = 2
\(A=x^2+3\left|y-2\right|-1\)
Có \(x^2\ge0;3\left|y-2\right|\ge0\)
\(\Rightarrow A\ge0+0-1=-1\)
Dấu '=" xảy ra khi MinA=-1\(\Leftrightarrow x=0;y=2\)
\(ĐKXĐ:\) \(\hept{\begin{cases}\sqrt{x}-1\ne0\\\sqrt{x}\ge0\\x-\sqrt{x}+1\ne0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\ne1\\x\ge0\end{cases}}\) ( vì \(x-\sqrt{x}+1>0\) )
Ta có:
\(A=x-\frac{2x-2\sqrt{x}}{\sqrt{x}-1}+\frac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1=x-\frac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+\frac{\sqrt{x^3}+1}{x-\sqrt{x}+1}+1\)
\(=x-2\sqrt{x}+\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1=x-2\sqrt{x}+\sqrt{x}+1+1\)
nên \(A=x-\sqrt{x}+2=x-2.\frac{1}{2}\sqrt{x}+\frac{1}{4}+\frac{7}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
Vậy, \(A_{min}=\frac{7}{4}\) khi \(x=\frac{1}{4}\)
A = | x - 1 | - 25
Để A có GTNN thì | x - 1 | phải có GTNN => | x - 1 | < hoặc = 0 với mọi x
A = | x - 1 | - 25 < hoặc = -25
Vì A có GTNN nên | x - 1 | = 0 => x = 1
Vậy GTNN của A là -25 với x = 1
2(x^2+x+1)/(x^2+1)
=2x^2+2x+2/x^2+1
=x^2+1/x^2+1+(x+1)^2/x^2+1
=1+(x+1)^2/(x^2+1)
ta có (x+1)2/(x^2+1) luôn lớn hơn hoặc bằng 0 do hai cái đều lớn hơn 0
suy ra GTNN của (x+1)^2/(x^2+1)=0 tại x=-1
vậy GTNN của B=1 tại x=-1
A = -2 + 3\(\sqrt{x+1}\)
Ta có: \(\sqrt{x+1}\)>= 0
=> A >= -2
A = -2 khi \(\sqrt{x+1}\)= 0 => x = -1
dựa vào điều kiện có nghĩa của căn thức, biểu thức dưới dấu căn phải dương và căn thức luôn lớn hoan hoặc bằng 0 nên
\(\sqrt{x+1}\ge0\Leftrightarrow3\sqrt{x+1}\ge0\Leftrightarrow-2+3\sqrt{x+1}\ge-2\)
\(\Rightarrow A_{min}=-2\Leftrightarrow x+1=0\Leftrightarrow x=-1\)