K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2023

THAM KHẢO!

Chương trình trên tính tổng các giá trị i*(i+1) trong khoảng từ 0 đến n-1 và lưu kết quả vào biến s. Để xác định độ phức tạp thời gian của chương trình này, ta cần xem xét số lần lặp của vòng for và các phép toán trong vòng lặp.

Vòng for: Vòng lặp này chạy từ 0 đến n-1, với n là 1.000. Vậy số lần lặp là n, hay 1.000 lần.

Các phép toán trong vòng lặp:

Phép gán s = s + i*(i+1): Đây là phép gán giá trị vào biến s, có độ phức tạp là O(1).

Phép toán i*(i+1): Đây là phép nhân và cộng, có độ phức tạp là O(1).

Vậy tổng độ phức tạp thời gian của chương trình là O(n), hay O(1.000)

19 tháng 8 2023

Tham khảo:

Hàm "Mystery(n)" sẽ trả về giá trị là r.

Độ phức tạp thời gian của chương trình này là O(n3)

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Chương trình trên tính số lần lặp cần thiết để i lớn hơn n bằng cách nhân i với 2 trong mỗi lần lặp, sau đó tăng biến sum lên 1. Để xác định độ phức tạp thời gian của chương trình này, ta cần xem xét số lần lặp của vòng while và các phép toán trong vòng lặp.

Vòng while: Vòng lặp này chạy cho đến khi i >= n, và giá trị ban đầu của i là 1. Trong mỗi lần lặp, i được nhân với 2, vậy số lần lặp là log2(n) (vì sau mỗi lần nhân i với 2, giá trị của i sẽ gấp đôi). Ví dụ, nếu n = 1000 thì số lần lặp là log2(1000) ≈ 10.

Các phép toán trong vòng lặp:

Phép gán i = i * 2: Đây là phép nhân, có độ phức tạp là O(1).

Phép gán sum = sum + 1: Đây là phép gán giá trị vào biến sum, có độ phức tạp là O(1).

Vậy tổng độ phức tạp thời gian của chương trình là O(log n), hay O(log2(1000)) ≈ O(10)

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Công việc của hàm là thực hiện sắp xếp.

Độ phức tạp của thuật toán là O(n2)

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Độ phức tạp của thuật toán sắp xếp nổi bọt là O(n2)

T = O(n) + O(n2) = O(n2)

5 tháng 3 2023

Chọn đáp án A
A. Đây là chương trình đếm các số nguyên trong khoảng từ 1 đến 1000 là bội số của 3

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

*Chương trình 1:

from collections import Counter

import time

n = 1000

c = 0

# Ghi lại thời điểm bắt đầu

start_time = time.time()

for k in range(n):

  c = c + 1

# Ghi lại thời điểm kết thúc

end_time = time.time()

# Tính thời gian hoàn thành

elapsed_time = end_time - start_time

# Sử dụng hàm Counter để đếm số lần lặp

counter = Counter(range(n))

# In số lần lặp

print("Số lần lặp: {}".format(counter))

# In thời gian thực thi

print("Thời gian thực thi của chương trình: {:.6f} giây".format(elapsed_time))

*Chương trình 2:

import time

n = 1000

c = 0

# Ghi lại thời điểm bắt đầu

start_time = time.perf_counter()

for k in range(n):

 for j in range(n):

  c = c + 1

# Ghi lại thời điểm kết thúc

end_time = time.perf_counter()

# Tính thời gian hoàn thành

elapsed_time = end_time - start_time

# In số lần lặp

print("Số lần lặp: {}".format(c))

# In thời gian thực thi

print("Thời gian thực thi của chương trình: {:.6f} giây".format(elapsed_time))

→Sự khác biệt độ phức tạp thời gian của 2 chương trình trên:

Độ phức tạp thời gian của chương trình 1 là O(1), còn độ phức tạp thời gian của chương trình 2 là O(n2).

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Đánh giá được mức đơn giản của thuật toán, từ đó tìm ra được cách giải nhanh nhất.

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Số lần so sánh giữa các phần tử: Trong thuật toán sắp xếp chọn, số lần so sánh giữa các phần tử là cố định, không phụ thuộc vào dữ liệu đầu vào. Cụ thể, số lần so sánh trong thuật toán sắp xếp chọn là \(\dfrac{n\left(n-1\right)}{2}\), với n là số phần tử trong mảng hoặc danh sách.

Số lần hoán đổi giữa các phần tử: Trong thuật toán sắp xếp chọn, số lần hoán đổi giữa các phần tử có thể đạt đến tối đa n-1 lần, với n là số phần tử trong mảng hoặc danh sách.

Vậy độ phức tạp thời gian của thuật toán sắp xếp chọn là O(n2), hay \(\dfrac{n\left(n-1\right)}{2}\) lần so sánh và tối đa n-1 lần hoán đổi giữa các phần tử.

23 tháng 8 2023

tham khảo!

Hai bộ dữ liệu đầu vào có cùng kích thước của thuật toán trên nhưng có thời gian chạy khác nhau có thể là:

- Bộ dữ liệu 1: A = [2, 4, 6, 8, 10] # Có 5 phần tử Kết quả mong đợi: Tổng các số chẵn là 30

- Bộ dữ liệu 2: A = [1, 3, 5, 7, 9] # Có 5 phần tử Kết quả mong đợi: Tổng các số chẵn là 0

Trong trường hợp này, cả hai bộ dữ liệu đều có cùng kích thước là 5 phần tử, nhưng thời gian chạy của thuật toán sẽ khác nhau vì số lượng số chẵn trong dãy số khác nhau. Bộ dữ liệu 1 chứa toàn số chẵn nên thời gian chạy của thuật toán sẽ lớn hơn bộ dữ liệu 2 chỉ chứa các số lẻ.