K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2018

Đáp án D

Ta có: B C ⊥ A A ' B C ⊥ A H

Do đó:

Mặt khác, tam giác A’BC vuông cân tại A’

nên A ' H = 1 2 B C = 3 a 2

Ta có:

⇒ φ = 60 o

5 tháng 8 2018

Giải bài 2 trang 104 sgk Hình học 11 | Để học tốt Toán 11

a) Tam giác ABC cân tại A có AI là đường trung tuyến nên đồng thời là đường cao:

AI ⊥ BC

+) Tương tự, tam giác BCD cân tại D có DI là đường trung tuyến nên đồng thời là đường cao:

DI ⊥ BC

+) Ta có: Giải bài tập Toán 11 | Giải Toán lớp 11

Giải bài 2 trang 104 sgk Hình học 11 | Để học tốt Toán 11

1 tháng 4 2022

Ta có :  A' là h/c của A lên (P) ; BC \(\subset\left(P\right)\) \(\Rightarrow\) \(AA'\perp BC\)

Mà : \(AH\perp BC\)  Suy ra : \(BC\perp\left(AA'H\right)\Rightarrow BC\perp A'H\)

Chỉ ra : \(\left(\left(P\right);\left(ABC\right)\right)=\widehat{A'HA}=30^o\)

\(\Delta A'HA\perp\) tại A : \(\dfrac{AH}{A'H}=cos30^o\Rightarrow A'H=\dfrac{\sqrt{3}}{2}.a\sqrt{3}=\dfrac{3a}{2}\)

\(S_{\Delta A'BC}=\dfrac{1}{2}.A'H.BC=\dfrac{1}{2}\dfrac{3a}{2}.3a=\dfrac{9a^2}{4}\)

1 tháng 4 2022

Sửa lại : \(A'H=2a\) 

\(S_{\Delta A'BC}=3a^2\)

31 tháng 3 2017

Giải bài 2 trang 104 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 2 trang 104 sgk Hình học 11 | Để học tốt Toán 11

8 tháng 8 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Tam giác ABC cân đỉnh A và có I là trung điểm của BC nên AI ⊥ BC. Tương tự tam giác DBC cân đỉnh D và có có I là trung điểm của BC nên DI ⊥ BC. Ta suy ra:

BC ⊥ (AID) nên BC ⊥ AD.

b) Vì BC ⊥ (AID) nên BC ⊥ AH

 

Mặt khác AH ⊥ ID nên ta suy ra AH vuông góc với mặt phẳng (BCD).

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

3 tháng 8 2018

Đáp án A.

Theo giả thiết ta có SO ⊥ (ABC). Gọi D là điểm đối xưng với B qua O

=> ABCD là hình vuông => AB//CD

=> d(AB;SC) = d(AB;(SCD))  = d(E;(SCD)) = 2d(O;(SCD))(Với E, F lần lượt là trung điểm của ABCD).

Áp dung tính chất tứ diện vuông cho tứ diện OSCD ta có:

9 tháng 5 2017

 

 

Đáp án A

Do  SA (ABC) tại A nên A là hình chiếu của S lênmặt phẳng (ABC) kéo theo AE  là hình chiếu của AE lên mặt phẳng (ABC).

Áp dụng định lý Py-ta-go trong  ∆ S A E  vuông tại B, ta có:

Trong  ∆ S A E  vuông tại A SA (ABC) nên  SA ⊥ AE, ta có:


 

 

5 tháng 4 2016

S A B H C

Tam giác ABC vuông cân tại A nên \(BC=2AH=2a\)

Từ đó \(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}a.2a=a^2\)

Vì \(SA\perp\left(ABC\right);AH\perp BC\) suy ra \(SH\perp BC\)

Do đó : \(\left(\left(SBC\right),\right)\left(ABC\right)=\widehat{SHA}=60^0\)

Suy ra \(SA=AH.\tan60^0=a\sqrt{3}\)

Vậy \(V_{SABC}=\frac{1}{3}SA.S_{ABC}=\frac{1}{3}a\sqrt{3}a^2=\frac{a^3\sqrt{3}}{3}\)