1.Tính tổng các số hạng trên:
\(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{100.102}\)
2.Cho P=\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{33}\)
Chứng minh\(\frac{3}{5}< P< \frac{4}{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt BT trên là A
\(2A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{100.102}\)
\(2A=\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+...+\frac{102-100}{100.102}\)
\(2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{102}\)
\(2A=\frac{1}{2}-\frac{1}{102}=\frac{50}{102}\Rightarrow A=\frac{25}{102}\)
Đặt A là biểu thức trên ta có :
\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{100.102}\)
\(=\frac{1}{2}\left(\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+...+\frac{102-100}{100.102}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{102}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{102}\right)=\frac{1}{2}.\frac{50}{102}=\frac{25}{102}\)
Số hạng thứ 50 theo quy luật là: \(\frac{1}{100.102}\)
Gọi tổng 50 số hạng đầu là S
Ta có: \(S=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{100.102}\)
\(\Leftrightarrow2S=\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{100.102}\)
\(\Leftrightarrow2S=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{102}=\frac{1}{2}-\frac{1}{102}=\frac{25}{51}\)
\(\Rightarrow S=\frac{25}{51}:2=\frac{25}{102}.\)
Bạn tham khảo ở link này nhé :
Câu hỏi của Tăng Minh Châu - Toán lớp 6 | Học trực tuyến
\(A=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}=\frac{100}{2}=50\)
\(\frac{-17}{2.4}-\frac{17}{4.6}-\frac{17}{6.8}-...-\frac{17}{100.102}\)
\(=-\frac{17}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{100.102}\right)\)
\(=-\frac{17}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{102}\right)\)
\(=-\frac{17}{2}\left(\frac{1}{2}-\frac{1}{102}\right)\)
\(=-\frac{17}{2}.\frac{25}{51}=-\frac{25}{6}\)
1.
\(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{100.102}\)
\(=\frac{4-2}{2.4}+\frac{6-4}{4.6}+....+\frac{102-100}{100.102}\)
\(=\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{100}-\frac{1}{102}\right)\times\frac{1}{2}\)
\(=\left(\frac{1}{2}-\frac{1}{102}\right)\times\frac{1}{2}\)
\(=\frac{25}{51}\times\frac{1}{2}\)
\(=\frac{25}{102}\)
1,
\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{100.102}\)
\(2A=\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{100.102}\)
\(2A=\frac{4-2}{2.4}+\frac{6-4}{4.6}+...+\frac{102-100}{100.102}\)
\(2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{102}\)
\(2A=\frac{1}{2}-\frac{1}{102}\)
\(2A=\frac{25}{51}\)
\(A=\frac{25}{102}\)
2,câu hỏi tương tự