Cho hình bình hàng ABCD (AB//CD), DC là đáy lớn AH là đường cao, M,N là trung điểm hai cạnh bên AD và BC
a) Chứng minh MNCH là hình bình hàng
b) Nếu DH = 5cm, AB = 10cm
Tính đường trung bình của hình thang ABCD trên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đg cao BK
DC=DH+HC=36(cm)
Dễ thấy tg AHD bằng tg BKC(ch-gn)
Suy ra DH=KC=6(cm)
Suy ra HK=DC-DH-KC=24(cm)
Dễ thấy AHKB là hcn nên HK=AB=24(cm)
Mà IJ là đtb hình thang cân ABCD nên \(IJ=\dfrac{AB+CD}{2}=\dfrac{24+36}{2}=30\left(cm\right)\)
a: Xét ΔADC và ΔBCD có
AD=BC
DC chung
AC=BD
Do đó: ΔADC=ΔBCD
Suy ra: \(\widehat{CAD}=\widehat{DBC}\)
b: Ta có: ΔADC=ΔBCD
nên \(\widehat{ODC}=\widehat{OCD}\)
hay ΔOCD cân tại O
Suy ra: OC=OD
hay OA=OB
a) Ta có MN là đường trung bình của tam giác ABD, do đó MN song song với AB và có độ dài bằng một nửa độ dài AB.
Tương tự, MN song song với CD và có độ dài bằng một nửa độ dài CD.
Vì AB//CD, nên MN song song với AB và CD.
Do đó, ta có MNCH là hình bình hành.
*Ib có phần b nhé =))