Trong mặt phẳng tọa dộ xOy, cho các điểm A(5; 4), B(2: 3) , C(6; 1)
Số đo \(\widehat{BAC}\)bằng ....
Hướng dãn cách giải hộ mình nhé !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left(-2m\right)^2-4\left(2m-3\right)\)
=4m^2-8m+12
=4m^2-8m+4+8
=(2m-2)^2+8>0
=>PT luôn có hai nghiệm phân biệt
y1+y2<9
=>x1^2+x2^2<9
=>(x1+x2)^2-2x1x2<9
=>(2m)^2-2(2m-3)<9
=>4m^2-4m+6-9<0
=>4m^2-4m-3<0
=>-1/2<m<3/2
mà m là số nguyên lớn nhất
nên m=1
Đáp án A.
Ta có A M ⊥ B C ⊥ O A ⇒ B C ⊥ O A M ⇒ B C ⊥ O M
Tương tự ta cũng có O M ⊥ A C ⇒ O M ⊥ P ⇒ P (P) nhận O M ¯ = 3 ; 2 ; 1 là vecto pháp tuyến.
Trong các đáp án, chọn đáp án mặt phẳng có vecto pháp tuyến có cùng giá với O M ¯ và không chứa điểm M thì thỏa.
Chọn A
Gọi A(a;0;0);B(0;b;0);C(0;0;c)
Phương trình mặt phẳng (P) có dạng:
Vì M là trực tâm của tam giác ABC nên:
Khi đó phương trình (P): 3x+2y+z-14=0.
Vậy mặt phẳng song song với (P) là: 3x+2y+z+14=0.
Chọn B.
Dễ thấy A, B nằm khác phía so với mặt phẳng (xOy). Gọi B’ là điểm đối xừng với B qua (xOy). Thế thì B ' - 1 ; 4 ; 3 và M B = M B ' . Khi đó
Đẳng thức xảy ra khi và chỉ khi M, A, B’ thẳng hàng và M nằm ngoài đoạn AB’. Như vậy M cần tìm là giao điểm của đường thẳng AB’ và mặt phẳng (xOy). Đường thẳng AB có phương trình
Từ đó tìm được M(5, 1, 0).
B^AC'
B^AC' là sao à bạn