Tìm số có 3 chữ số, biết rằng nếu xóa chữ số hàng trăm của số đó đi thì được số mới ; lấy số đã cho chia số mới được thương là 3 và số dư là 8.
đang cần gấp giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi số cần tìm là $\overline{ab1}$ với $a,b$ là số tự nhiên có 1 chữ số. $a>0$.
Theo bài ra ta có:
$\overline{ab}=3\times \overline{b1}$
$10\times a+b=3\times (b\times 10+1)=30\times b+3$
$30\times b-10\times a=b-3$
Vì $30\times b-10\times a$ có tận cùng bằng $0$ nên $b-3$ có tận cùng bằng $0$,
$\Rightarrow b$ có tận cùng là $3$.
$\Rightarrow b=3$.
Vậy: $30\times 3-10\times a=0$
$90-10\times a=0$
$a=90:10=9$
Vậy số cần tìm là $931$
Gọi số cần tìm là ab1 ( a; b là các chữ số, a khác 0)
theo đề bài ta có: ab = 3 x b1
a x 10 + b = 3 x (b x 10 + 1)
a x 10 + b = 30 x b + 3
a x 10 = 29 x b + 3
Vì a x 10 là số có tận cùng bằng 0 nên 29 x b + 3 cũng có chữ số tận cùng bằng 0 nên 29 x b phải có tận cùng bằng 7
vậy b = 3 thì a x 10 = 29 x 3 + 3 = 90
a = 90 : 10 = 9
Vậy số cần tìm là 931
GIải
Gọi số đó là ab2; số sau khi xóa chữ số 2 là ab; số sau khi xóa chữ số a là b2.
Theo đề ta có: ab : b2 = 2. Vì b : 2 = 2 nên b = 4.
Thay b = 4 vào ab : b2 = 2 được a4 : 42 = 2, vì a : 4 = 2 nên a = 8.
Thay a = 8 và b = 4 ta được số 842.
Đáp số: 842
Gọi số cần tìm có dạng là : abc
Khi đó :
Số mới khi xóa chữ số hàng trăm của số đó là : bc
Nếu xóa chữ số hàng trăm của số đó đi thì được một số mới . Lấy số mới đã cho chia cho số mới được thương là 3 và số dư là 8.
Nên ta có 1 bài toán tìm số dựa trên cơ sở tìm x sau :
abc - 8 = 3bc
100a+10b+c-8 = 30b+c
100a+10b+c-30b-c = 8
100a-20b = 8
20(5a-b)=8
5a-b=2/5
hình như sai thì phải em ạ .
Nếu như xóa chữ số hàng trăm của số đó đi thì được một số mới . Lấy số đã cho chia cho số mới ta được thương là 3 và dư 8
Nếu như xóa chữ số hàng trăm đi thì nghĩa rằng là : số đó đã bị giảm đi 100 đơn vị . Mà lại chia cho số mới được thương là 3 và dư 8 là vô lí em ạ.