TÍNH S:
1.
S=1/2!x2/3!x3/4!x...x99/100!
2
S=1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/16(1+2+3+...+16)
Thank you nha!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) \(S=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
\(S=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(3S=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\)
\(3S-S=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\right)\)
\(2S=3+\frac{1}{3^7}\)
\(2S=\frac{3^8+1}{3^7}\)
\(S=\frac{3^8+1}{3^7}.\frac{1}{2}\)
\(S=\frac{3^8+1}{2.3^7}\)
Vậy \(S=\frac{3^8+1}{2.3^7}\)
Chúc bạn học tốt ~
Ta có :
`5S=5(1/(5^2)+2/(5^3)+3/(5^4)+...+99/(5^100))`
`5S=1/5+2/(5^2)+3/(5^3)+...+99/(5^100)`
`=>5S-S=1/5+2/(5^2)+3/(5^3)+...+99/(5^100)-(1/(5^2)+2/(5^3)+3/(5^4)+...+99/(5^100))`
`4S=1/5+1/(5^2)+1/(5^3)+1/(5^4)+...+1/(5^99) -99/(5^100)`
`20S=5(1/5+1/(5^2)+1/(5^3)+...+1/(5^99)-99/(5^100))`
`20S=1+1/5+1/(5^2)+....+1/(5^98)-99/(5^99)`
`=>20S-4S=(1+1/5+1/(5^2)+...+1/(5^98)-99/(5^99))-(1/5+1/(5^2)+1/(5^3)+...+1/(5^99)-99/(5^100))`
`=>16S=1-99/(5^99)-1/(5^99)-99/(5^100)`
Vì `-99/(5^99)-1/(5^99)-99/(5^100)<0=>1-99/(5^99)-1/(5^99)-99/(5^100)<1`
`=>S<1/16`
1: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(-4x+1\right)=0\)
hay \(x\in\left\{3;\dfrac{1}{4}\right\}\)
2: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2x+16\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1-x^2+2x-16\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x-15\right)=0\)
hay \(x\in\left\{1;5\right\}\)
3: \(\Leftrightarrow\left(x-1\right)\left(4x^2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(2x+1\right)=0\)
hay \(x\in\left\{1;\dfrac{1}{2};-\dfrac{1}{2}\right\}\)
4: \(\Leftrightarrow x^2\left(x+4\right)-9\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-3\right)\left(x+3\right)=0\)
hay \(x\in\left\{-4;3;-3\right\}\)
5: \(\Leftrightarrow\left[{}\begin{matrix}3x+5=x-1\\3x+5=1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-6\\4x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)
6: \(\Leftrightarrow\left(6x+3\right)^2-\left(2x-10\right)^2=0\)
\(\Leftrightarrow\left(6x+3-2x+10\right)\left(6x+3+2x-10\right)=0\)
\(\Leftrightarrow\left(4x+13\right)\left(8x-7\right)=0\)
hay \(x\in\left\{-\dfrac{13}{4};\dfrac{7}{8}\right\}\)
1.
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=\left(x-3\right)\left(5x-2\right)\)
\(\Leftrightarrow x+3=5x-2\)
\(\Leftrightarrow4x=5\Leftrightarrow x=\dfrac{5}{4}\)
2.
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=\left(x-1\right)\left(x^2-2x+16\right)\)
\(\Leftrightarrow x^2+x+1=x^2-2x+16\)
\(\Leftrightarrow3x=15\Leftrightarrow x=5\)
3.
\(\Leftrightarrow4x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2};x=-\dfrac{1}{2}\end{matrix}\right.\)
a) \(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)
\(=1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)
=> 7S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}\)
Lấy 7S trừ S ta có :
7S - S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}-\left[1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\right]\)
6S = \(7-1-1+\left(\frac{1}{7}\right)^{2007}=5+\left(\frac{1}{7}\right)^{2007}\Rightarrow S=\frac{5+\left(\frac{1}{7}\right)^{2007}}{6}\)
A=1.2.3+2.3.4+....+99.100.101
4A=1.2.3.4+2.3.4.(5-1)+3.4.5.(6-2)+....+98.99.100.(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-3.4.5.2+....+98.99.100.101-98.99.100.97
4A=98.99.100.101
4A=97990200
A=97990200/4
A=24497550
B=1.2+3.4+5.6+7.8+8.9+...+999.1000
3B=1.2.3+2.3.(4-1)+3.4(5-2)+....+998.999(1001-998)
3B=1.2.3+2.3.4-2.3.1+3.4.5-3.4.2+....+998.999.1001-998.999.998
3B=999.1000.1001
3B=999999000
B=999999000/3
B=333333000
C=1+4+9+16+25+36+.....+10000
C=1^2+2^2+3^2+4^2+5^2+6^2+....+100^2
C=(1^2+3^2+5^2+.....+99^2)+(2^2+4^2+6^2+....+100^2)
C=99.100.101/6 + 100.101.102/6
C=166650 +171700
C=338350
Còn câu d bạn dựa vào câu c là làm được ngay bây h mk mỏi tay rùi ko muốn đánh nữa khi nào rảnh mk gửi công thức cho nha bây h mk bận rùi.
chúc bn học tốt
A=1.2.3+2.3.4+....+99.100.101
4.A=1.2.3.(4-0)+2.3.4.(5-1)+...+99.100.101.(102-98)
4.A=1.2.3.1-0.1.2.3+2.3.4.5-1.2.3.4+....+99.100.101.102-98.99.100.101
4.A=99.100.101.102
A=\(\frac{99.100.101.102}{4}\)
B=1.2+2.3+3.4+...+999.1000
3.B=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.....+999.1000.(1001-998)
3.B=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+......+999.1000.1001-998.999.1000
3.B=999.1000.1001
=>B=\(\frac{999.1000.1001}{3}\)
C và D dễ lắm bạn tự làm nhé
1/
S= 1/2 . 2/3 . 3/4 . ... . 99.100
S= 1/100