K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2017

1/

S= 1/2 . 2/3 . 3/4 . ... . 99.100

S= 1/100

9 tháng 7 2018

\(a)\) \(S=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)

\(S=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)

\(3S=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\)

\(3S-S=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\right)\)

\(2S=3+\frac{1}{3^7}\)

\(2S=\frac{3^8+1}{3^7}\)

\(S=\frac{3^8+1}{3^7}.\frac{1}{2}\)

\(S=\frac{3^8+1}{2.3^7}\)

Vậy \(S=\frac{3^8+1}{2.3^7}\)

Chúc bạn học tốt ~ 

21 tháng 2 2023

Ta có : 

`5S=5(1/(5^2)+2/(5^3)+3/(5^4)+...+99/(5^100))`

`5S=1/5+2/(5^2)+3/(5^3)+...+99/(5^100)`

`=>5S-S=1/5+2/(5^2)+3/(5^3)+...+99/(5^100)-(1/(5^2)+2/(5^3)+3/(5^4)+...+99/(5^100))`

`4S=1/5+1/(5^2)+1/(5^3)+1/(5^4)+...+1/(5^99) -99/(5^100)`

`20S=5(1/5+1/(5^2)+1/(5^3)+...+1/(5^99)-99/(5^100))`

`20S=1+1/5+1/(5^2)+....+1/(5^98)-99/(5^99)`

`=>20S-4S=(1+1/5+1/(5^2)+...+1/(5^98)-99/(5^99))-(1/5+1/(5^2)+1/(5^3)+...+1/(5^99)-99/(5^100))`

`=>16S=1-99/(5^99)-1/(5^99)-99/(5^100)`

Vì `-99/(5^99)-1/(5^99)-99/(5^100)<0=>1-99/(5^99)-1/(5^99)-99/(5^100)<1`

`=>S<1/16`

1: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(-4x+1\right)=0\)

hay \(x\in\left\{3;\dfrac{1}{4}\right\}\)

2: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2x+16\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1-x^2+2x-16\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x-15\right)=0\)

hay \(x\in\left\{1;5\right\}\)

3: \(\Leftrightarrow\left(x-1\right)\left(4x^2-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(2x+1\right)=0\)

hay \(x\in\left\{1;\dfrac{1}{2};-\dfrac{1}{2}\right\}\)

4: \(\Leftrightarrow x^2\left(x+4\right)-9\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-3\right)\left(x+3\right)=0\)

hay \(x\in\left\{-4;3;-3\right\}\)

5: \(\Leftrightarrow\left[{}\begin{matrix}3x+5=x-1\\3x+5=1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-6\\4x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)

6: \(\Leftrightarrow\left(6x+3\right)^2-\left(2x-10\right)^2=0\)

\(\Leftrightarrow\left(6x+3-2x+10\right)\left(6x+3+2x-10\right)=0\)

\(\Leftrightarrow\left(4x+13\right)\left(8x-7\right)=0\)

hay \(x\in\left\{-\dfrac{13}{4};\dfrac{7}{8}\right\}\)

14 tháng 2 2022

1.

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=\left(x-3\right)\left(5x-2\right)\)

\(\Leftrightarrow x+3=5x-2\)

\(\Leftrightarrow4x=5\Leftrightarrow x=\dfrac{5}{4}\)

2.

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=\left(x-1\right)\left(x^2-2x+16\right)\)

\(\Leftrightarrow x^2+x+1=x^2-2x+16\)

\(\Leftrightarrow3x=15\Leftrightarrow x=5\)

3.

\(\Leftrightarrow4x^2\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x^2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2};x=-\dfrac{1}{2}\end{matrix}\right.\)

5 tháng 2 2020

a) \(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)

\(=1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)

=> 7S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}\)

Lấy 7S trừ S ta có : 

7S - S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}-\left[1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\right]\)

6S = \(7-1-1+\left(\frac{1}{7}\right)^{2007}=5+\left(\frac{1}{7}\right)^{2007}\Rightarrow S=\frac{5+\left(\frac{1}{7}\right)^{2007}}{6}\)

3 tháng 2 2017

A=1.2.3+2.3.4+....+99.100.101

4A=1.2.3.4+2.3.4.(5-1)+3.4.5.(6-2)+....+98.99.100.(101-97)

4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-3.4.5.2+....+98.99.100.101-98.99.100.97

4A=98.99.100.101

4A=97990200

A=97990200/4

A=24497550

B=1.2+3.4+5.6+7.8+8.9+...+999.1000

3B=1.2.3+2.3.(4-1)+3.4(5-2)+....+998.999(1001-998)

3B=1.2.3+2.3.4-2.3.1+3.4.5-3.4.2+....+998.999.1001-998.999.998

3B=999.1000.1001

3B=999999000

B=999999000/3

B=333333000

C=1+4+9+16+25+36+.....+10000

C=1^2+2^2+3^2+4^2+5^2+6^2+....+100^2

C=(1^2+3^2+5^2+.....+99^2)+(2^2+4^2+6^2+....+100^2)

C=99.100.101/6  +   100.101.102/6

C=166650         +171700

C=338350

Còn câu d bạn  dựa vào câu c là làm được ngay bây h mk mỏi tay rùi ko muốn đánh nữa khi nào rảnh mk gửi công thức cho nha bây h mk bận rùi.

chúc bn học tốt

3 tháng 2 2017

   A=1.2.3+2.3.4+....+99.100.101

4.A=1.2.3.(4-0)+2.3.4.(5-1)+...+99.100.101.(102-98)

4.A=1.2.3.1-0.1.2.3+2.3.4.5-1.2.3.4+....+99.100.101.102-98.99.100.101

4.A=99.100.101.102

  A=\(\frac{99.100.101.102}{4}\)

   B=1.2+2.3+3.4+...+999.1000

3.B=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.....+999.1000.(1001-998)

3.B=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+......+999.1000.1001-998.999.1000

3.B=999.1000.1001

=>B=\(\frac{999.1000.1001}{3}\)

C và D dễ lắm bạn tự làm nhé