1/50+1/10+1/20+..........+1/640+1/1280
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A = \(\dfrac{1}{5}+\dfrac{1}{10}+...+\dfrac{1}{1280}\)
= \(\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{20}+...+\dfrac{1}{640}-\dfrac{1}{1280}\)
= \(\dfrac{2}{5}-\dfrac{1}{1280}=\dfrac{511}{1280}\)
Giải:
\(\dfrac{1}{5}+\dfrac{1}{10}+\dfrac{1}{20}+\dfrac{1}{40}+...+\dfrac{1}{1280}\)
\(=\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{20}+\dfrac{1}{20}-\dfrac{1}{40}+...+\dfrac{1}{640}-\dfrac{1}{1280}\)
\(=\dfrac{2}{5}-\dfrac{1}{1280}\)
\(=\dfrac{511}{1280}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}\)
\(=\frac{1}{5}\left(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)\)
\(=\frac{\frac{1}{5}\left(1-\frac{1}{2^9}\right)}{\left(1-\frac{1}{2}\right)}\)
\(=\frac{2}{5}\left(1-\frac{1}{2^9}\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Số lượng số của A là : ( 1280-5):5+1=256 (số)
A= (1280+5)x256:2=164480
A có số số hạng là :
(1280 - 5 ):5+1 = 256 ( số hạng )
A = ( 1280 + 5 ) x 256 : 2= 164480
mink nhanh nhất
![](https://rs.olm.vn/images/avt/0.png?1311)
C = \(\frac{1}{5}\)+\(\frac{1}{10}\)+\(\frac{1}{20}\)+\(\frac{1}{40}\)+\(\frac{1}{80}\)+........+\(\frac{1}{1280}\)
2C = 2 . ( \(\frac{1}{5}\)+\(\frac{1}{10}\)+.......+\(\frac{1}{1280}\))
2C = \(\frac{2}{5}\)+\(\frac{1}{5}\)+\(\frac{1}{10}\)+.....+\(\frac{1}{1280}\)
2C-C = ( \(\frac{2}{5}\)+\(\frac{1}{5}\)+\(\frac{1}{10}\)+......+\(\frac{1}{1280}\)) - (\(\frac{1}{5}\)+\(\frac{1}{10}\)+.....+\(\frac{1}{1280}\))
C . ( 2-1) = \(\frac{2}{5}\)
C = \(\frac{2}{5}\)
Vậy C = \(\frac{2}{5}\)
\(C=\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+\frac{1}{80}+........+\frac{1}{1280}\)
\(\Rightarrow2C=2\left(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+\frac{1}{80}+...........+\frac{1}{1280}\right)\)
\(\Rightarrow2C=\frac{2}{5}+\frac{1}{5}+\frac{1}{10}+.............+\frac{1}{1280}\)
\(\Rightarrow2C-C=\left(\frac{2}{5}+\frac{1}{5}+\frac{1}{10}+............+\frac{1}{1280}\right)-\left(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+\frac{1}{80}+...........+\frac{1}{1280}\right)\)
\(\Rightarrow C=\frac{2}{5}-\frac{1}{1280}\)
\(\Rightarrow C=\frac{512}{1280}-\frac{1}{1280}\)
\(\Rightarrow C=\frac{511}{1280}\)
Vậy C = \(\frac{511}{1280}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1/5 + 1/5 - 1/10 + 1/10 - 1/20 + 1/20 - 1/40 + ... + 1/640 - 1/1280
= 1/5 + 1/5 - 1/1280 = 511/1280
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\dfrac{1}{2^0.5}+\dfrac{1}{2^1.5}+\dfrac{1}{2^2.5}+...+\dfrac{1}{2^8.5}\)
\(5A=\dfrac{1}{2^0}+\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^8}\)
\(5A=2-1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+...++\dfrac{1}{128}+\dfrac{1}{256}\)
\(5A=2-\dfrac{1}{256}=\dfrac{511}{256}\)
\(A=\dfrac{511}{1280}\)
cứu với ạ
Sửa đê: A=1/5+1/10+...+1/640+1/1280
=1/5(1+1/2+...+1/128+1/256)
Đặt B=1+1/2+...+1/128+1/256
=>2B=2+1+...+1/64+1/128
=>B=2-1/256=511/256
=>A=511/1280