Phân tích đa thức thành nhân tử
\(x^7+x^5-1\)
THANK YOU VERY....MUCH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2-x^2-3x-1\)
\(=x^2-3x-1\)
\(=\frac{1}{4}\left(4x^2-12x-4\right)\)
\(=\frac{-1}{4}\left[13-\left(4x-12x+9\right)\right]\)
\(=-\frac{1}{4}\left[13-\left(2x-3\right)^2\right]\)
\(=-\frac{1}{4}\left(\sqrt{13}-2x+3\right)\left(\sqrt{13}+2x-3\right)\)
Bài 1 :
\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)
Bài 2 :
\(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)
\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)
Tick đúng nha
x^7 + x^5 + 1
=x^7-x^6+x^5-x^3+x^2+x^6-x^5+x^4-x^2+x+x^5-x^4+x^3-x+1
=(x^2+x+1)(x^5-x^4+x^3-x+1)
+x^4 - 6x^3 + 12x^2 - 14x + 3
=x^4-2x^3+3x^2-4x^3-6x^2-12x+x^2-2x+3
=(x^2-4x+1)(x^2-2x+3)
\(x^7+x^5-1\)
\(=x^7+x^6+x^5-x^3-x^2-x^6-x^5-x^4+x^2+x+x^5+x^4+x^3-x-1\)
\(=x^2\left(x^5+x^4+x^3-x-1\right)-x\left(x^5+x^4+x^3-x-1\right)+\left(x^5+x^4+x^3-x-1\right)\)
\(=\left(x^2-x+1\right)\left(x^5+x^4+x^3-x-1\right)\)
\(=x^7-x+x^5+x^2-\left(x^2-x+1\right)=x\left(x^3-1\right)\left(x^3+1\right)+x^2\left(x^3+1\right)-\left(x^2-x+1\right)\)\(=x\left(x^3-1\right)\left(x+1\right)\left(x^2-x+1\right)+x^2\left(x+1\right)\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
Tự Tính Tiếp!!!!!!!!!