K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

Để giá trị căn được xác định thì \(x-1\ge0\Leftrightarrow x\ge1\)

Đề có sai gì không bạn

13 tháng 5 2018

a) Với x = 25 thì \(N=\frac{\sqrt{25}+1}{\sqrt{25}}=\frac{6}{5}\)

b) Ta có   \(M=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)}\)

\(M=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\)

Suy ra \(S=M.N=\frac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

25 tháng 6 2015

Ta có: \(xy+yz+zx\le x^2+y^2+z^2\le3\)

\(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{9}{1+xy+1+yz+1+zx}=\frac{9}{3+\left(xy+yz+zx\right)}\ge\frac{9}{3+3}=\frac{3}{2}\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)

 

8 tháng 9 2017

Đặt \(\hept{\begin{cases}a=x-1\\b=y-1\\c=z-1\end{cases}}\)\(-1\le a,b,c\le1\) và \(a+b+c=0\)

\(T=(a+1)^4+(b+1)^4+(c+1)^4-12abc\)

\(=a^4+b^4+c^4+4(a^3+b^3+c^3)+6(a^2+b^2+c^2)+4(a+b+c)+3-12abc\)

Từ \(a+b+c=0\Rightarrow a^3+b^3+c^3=0\). Do đó:

\(T=a^4+b^4+c^4+6(a^2+b^2+c^2)+3\ge3\)

Xảy ra khi \(a=1;b=-1;c=0\)

8 tháng 9 2017

và các hoán vị nhé dấu = ấy

21 tháng 7 2018

# Bài 1

* Ta cm BĐT sau \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\) (1) bằng cách biến đổi tương đương

* Với \(x,y>0\) áp dụng (1) ta có

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{\left(\sqrt{x}\right)^2}+\dfrac{1}{\left(\sqrt{y}\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\)

\(\Rightarrow\) \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\le1\) \(\Leftrightarrow\) \(0< \dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\le1\) (I)

* Ta cm BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với \(a,b>0\) (2)

Áp dụng (2) với x , y > 0 ta có

\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\ge\dfrac{4}{\sqrt{x}+\sqrt{y}}\) (II)

* Từ (I) và (II) \(\Rightarrow\) \(\dfrac{4}{\sqrt{x}+\sqrt{y}}\le1\)

\(\Leftrightarrow\) \(\sqrt{x}+\sqrt{y}\ge4\)

Dấu "=" xra khi \(x=y=4\)

Vậy min \(\sqrt{x}+\sqrt{y}=4\) khi \(x=y=4\)

NV
24 tháng 10 2019

ĐKXĐ: \(x\ge0;x\ne1\)

\(A=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\frac{\left(x-1\right)^2}{2}\)

\(=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}=-\sqrt{x}\left(\sqrt{x}-1\right)\)

\(=\sqrt{x}\left(1-\sqrt{x}\right)\)

\(0< x< 1\Rightarrow\left\{{}\begin{matrix}\sqrt{x}>0\\1-\sqrt{x}>0\end{matrix}\right.\) \(\Rightarrow\sqrt{x}\left(1-\sqrt{x}\right)>0\Rightarrow A>0\)

\(A< 0\Leftrightarrow\sqrt{x}\left(1-\sqrt{x}\right)< 0\Leftrightarrow1-\sqrt{x}< 0\Rightarrow x>1\)

\(A>-2\Leftrightarrow\sqrt{x}\left(1-\sqrt{x}\right)+2>0\Leftrightarrow-x+\sqrt{x}+2>0\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(2-\sqrt{x}\right)>0\Leftrightarrow2-\sqrt{x}>0\Rightarrow x< 4\)

Kết hợp ĐKXĐ \(\Rightarrow\left\{{}\begin{matrix}0\le x< 4\\x\ne1\end{matrix}\right.\)

\(A< -2x\Leftrightarrow\sqrt{x}-x< -2x\Leftrightarrow x+\sqrt{x}< 0\) (vô nghiệm \(\forall x\ge0\))

\(A>2\sqrt{x}\Leftrightarrow\sqrt{x}-x>2\sqrt{x}\Leftrightarrow x+\sqrt{x}< 0\) giống như trên

\(A=-x+\sqrt{x}=-x+\sqrt{x}-\frac{1}{4}+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

\(A_{max}=\frac{1}{4}\) khi \(\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)