K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2023

\(A=x^2-10x+32=x^2-10x+25+9=\left(x-5\right)^2+9\)

mà \(\left(x-5\right)^2\ge0\)

\(\Rightarrow\left(x-5\right)^2+9\ge9\)

\(\Rightarrow Min\left(A\right)=9\)

12 tháng 7 2023

mà (�−5)2≥0

⇒(�−5)2+9≥9

⇒���(�)=9

15 tháng 10 2023

\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)

15 tháng 10 2023

b:

\(D=-25x^2+10x-1-10\)

\(=-\left(25x^2-10x+1\right)-10\)

\(=-\left(5x-1\right)^2-10< =-10\)

Dấu = xảy ra khi x=1/5

\(E=-9x^2-6x-1+20\)

\(=-\left(9x^2+6x+1\right)+20\)

\(=-\left(3x+1\right)^2+20< =20\)

Dấu = xảy ra khi x=-1/3

\(F=-x^2+2x-1+1\)

\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)

Dấu = xảy ra khi x=1

2 tháng 12 2015

B=\(x^2+3x+7\)

=>B= \(x^2+2\times\frac{3}{2}x+\frac{9}{4}+\frac{19}{4}\)

=>B=\(\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\)

\(\left(x+\frac{3}{2}\right)^2\ge0\)   (Với mọi x)

=>\(\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\)   (Với mọi x )

Dấu "='' xảy ra  <=> \(x+\frac{3}{2}=0=>x=-\frac{3}{2}\)

Vậy min B bằng 19/4 <=>x=-3/2

Phần b thì mk làm đc n phần a hình như sai đề pn ạ !!!
 

27 tháng 1 2022

1) Ta có: \(A=x^2+10x+25,01=\left(x+5\right)^2+0,01\ge0,01\)

Dấu "=" xảy ra khi x = -5

2) Ta có: \(B=3x^2-6x+4=3\left(x-1\right)^2+1\ge1\)

Dấu "=" xảy ra khi x = 1

27 tháng 1 2022

\(A=x^2+10x+25,01\)

\(=\left(x^2+10x+25\right)+0,01\)

\(=\left(x+5\right)^2+0,01\) ≥ \(0,01\) (vì \(\left(x+5\right)^2\text{≥}0\))

MinA=0,01 ⇔ \(x=-5\)

8 tháng 9 2021

A= x2-4x+6 = (x-2)2+2 ≥ 2 

Dấu "=" xảy ra ⇔ x=2

B = 25x2+10x-3 = (5x+1)2-4 ≥ -4

Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{5}\)

C = 5-6x+4x2 = \(\left(\dfrac{3}{2}-2x\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{3}{4}\)

8 tháng 9 2021

A= 2x^2-4x+ 4+2

A=(x-2)2 + 2

A có giá trị nhỏ nhất khi (x-2)=0

x-2 =0

x=2

 B, C tự làm :>

25 tháng 2 2019

Câu 1 : a ) Ta có : \(A=\left|x-32\right|\ge0\) 

\(\Rightarrow GTNN\) của \(A=0\)( khi đó x = 32 )

            b) Để B đạt GTNN thì \(\left|x+2\right|\) đạt GTNN

Ta có : \(\left|x+2\right|\ge0\Leftrightarrow GTNN\) của \(\left|x+\right|=0\)( khi đo x = -2 )

\(\Rightarrow GTNN\) của B = 25

Câu 2 : a) Để A đạt GTNN thì \(\left|x\right|\) đạt GTNN

Mà \(\left|x\right|\ge0\Leftrightarrow GTNN\) của |x| = 0

Vậy GTNN của A bằng 2

            b) Để B đạt GTNN thì \(\left|x+5\right|\) đạt GTNN

Mà \(\left|x+5\right|\ge0\Leftrightarrow GTNN\)  của \(\left|x+5\right|=0\)( khi đó x = -5 )

Vậy GTNN của B bằng  21

               c) Để B đạt GTNN thì \(\left(n-1\right)^2\) đạt GTNN

Mà \(\left(x-1\right)^2\ge0\Leftrightarrow GTNN\)  của\(\left(n-1\right)^2=0\)( khi đó n = 1)

Vậy GTNN của C bằng  25

27 tháng 2 2019

Câu 1 : a ) Ta có : A=|x32|0 

GTNN của A=0( khi đó x = 32 )

            b) Để B đạt GTNN thì |x+2| đạt GTNN

Ta có : |x+2|0GTNN của |x+|=0( khi đo x = -2 )

GTNN của B = 25

Câu 2 : a) Để A đạt GTNN thì |x| đạt GTNN

Mà |x|0GTNN của |x| = 0

Vậy GTNN của A bằng 2

            b) Để B đạt GTNN thì |x+5| đạt GTNN

Mà |x+5|0GTNN  của |x+5|=0( khi đó x = -5 )

Vậy GTNN của B bằng  21

               c) Để B đạt GTNN thì (n1)2 đạt GTNN

Mà (x1)20GTNN  của(n1)2=0( khi đó n = 1)

Vậy GTNN của C bằng  25

28 tháng 10 2016

A=x2+10x+35=x2+10x+25+10=x2+2*x*5+52+10=(x+5)2+10

Ta có: (x+5)2>=0(với mọi x)

=> (x+5)2+10>=10(với mọi x)

hay A>=10(với mọi x)

Do đó, GTNN của A là 10 khi: (x+5)2=0

x+5=0

x=0-5

x=-5

Vậy GTNN của A là 10 tại x=-5

28 tháng 10 2016

thanks bạn ạ