Cho a+b+c=3 tìm min A=\(\frac{1}{a^2+4bc}\)+\(\frac{1}{b^2+4ca}\)+\(\frac{1}{c^2+4ab}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{4ab+1}{4ab}=1+\frac{1}{4ab}\ge1+\frac{1}{\left(a+b\right)^2}\)
\(\Rightarrow\frac{4ab}{4ab+1}\le\frac{1}{1+\frac{1}{\left(a+b\right)^2}}\)
Tương tự ta được :
\(\frac{4bc}{4bc+1}\le\frac{1}{1+\frac{1}{\left(b+c\right)^2}};\frac{4ca}{4ca+1}\le\frac{1}{1+\frac{1}{\left(c+a\right)^2}}\)
\(\Rightarrow VP\le\frac{1}{1+\frac{1}{\left(a+b\right)^2}}+\frac{1}{1+\frac{1}{\left(b+c\right)^2}}+\frac{1}{1+\frac{1}{\left(c+a\right)^2}}\)
BĐT cần chứng minh tương đương với
\(a+b+c\ge\frac{1}{1+\frac{1}{\left(a+b\right)^2}}+\frac{1}{1+\frac{1}{\left(b+c\right)^2}}+\frac{1}{1+\frac{1}{\left(c+a\right)^2}}\) (1)
Đặt \(a+b=x;b+c=y;c+a=z\)
\(x,y,z>0;x+y+z=2\left(a+b+c\right)\)
\(\Rightarrow\left(1\right)\Leftrightarrow x+y+z\ge2\left(\frac{1}{1+\frac{1}{x^2}}+\frac{1}{1+\frac{1}{y^2}}+\frac{1}{1+\frac{1}{z^2}}\right)\)
\(VP=\frac{2x^2}{x^2+1}+\frac{2y^2}{y^2+1}+\frac{2z^2}{z^2+1}\le\frac{2x^2}{2x}+\frac{2y^2}{2y}+\frac{2z^2}{2z}=x+y+z=VT\)
Vậy BĐT được chứng minh
Dấu "=" xảy ra khi \(x=y=z=1\Leftrightarrow a=b=c=\frac{1}{2}\)
\(\frac{4ab}{4ab+1}< =\frac{4ab}{2\sqrt{4ab}}=\sqrt{ab}\)
CMTT =>\(\hept{\begin{cases}\frac{4bc}{4bc+1}< =\sqrt{bc}\\\frac{4ac}{4ac+1}< =\sqrt{ac}\end{cases}}\)
Ta có \(a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ac}\)
=\(\frac{1}{2}\left(\left(a+2\sqrt{ab}+b\right)+\left(b+2\sqrt{bc}+c\right)+\left(c+2\sqrt{ac}+a\right)\right)\)
=\(\frac{1}{2}\left(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\right)>=0\)
dấu = xảy ra khi a=b=c.
\(=>a+b+c>=\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)\(>=\frac{4ab}{4ab+1}+\frac{4bc}{4bc+1}+\frac{4ac}{4ac+1}\)
\(3a^2+4ab+b^2=3a^2+3ab+ab+b^2=3a\left(a+b\right)+b\left(a+b\right)=\left(3a+b\right)\left(a+b\right)\)
xong AM -GM
mình đánh nhầm, đề là cho a,b,c là các số thực dương tổng bằng 1
Áp dụng BĐT AM-GM ta có:
\(\dfrac{1}{\sqrt{3a^2+4ab+b^2}}=\dfrac{1}{\sqrt{\left(a+b\right)\left(3a+b\right)}}=\dfrac{\sqrt{2}}{\sqrt{\left(2a+2b\right)\left(3a+b\right)}}\)
\(\ge\dfrac{\sqrt{2}}{\dfrac{2a+2b+3a+b}{2}}=\dfrac{\sqrt{2}}{\dfrac{5a+3b}{2}}=\dfrac{2\sqrt{2}}{5a+3b}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\dfrac{1}{\sqrt{3b^2+4bc+c^2}}\ge\dfrac{2\sqrt{2}}{5b+3c};\dfrac{1}{\sqrt{3c^2+4ca+a^2}}\ge\dfrac{2\sqrt{2}}{5c+3a}\)
Cộng theo vế 3 BĐT trên ta có:
\(P\ge\dfrac{2\sqrt{2}}{5a+3b}+\dfrac{2\sqrt{2}}{5b+3c}+\dfrac{2\sqrt{2}}{5c+3a}\)
\(\ge\dfrac{18\sqrt{2}}{8\left(a+b+c\right)}=\dfrac{18\sqrt{2}}{8}=\dfrac{9\sqrt{2}}{4}\)
Xảy ra khi \(a=b=c=\dfrac{1}{3}\)