\(\frac{1}{a^2+4bc}\)+\(\frac{1}{b^2+4ca}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2020

Ta có : 

\(\frac{4ab+1}{4ab}=1+\frac{1}{4ab}\ge1+\frac{1}{\left(a+b\right)^2}\)

\(\Rightarrow\frac{4ab}{4ab+1}\le\frac{1}{1+\frac{1}{\left(a+b\right)^2}}\)

Tương tự ta được : 

\(\frac{4bc}{4bc+1}\le\frac{1}{1+\frac{1}{\left(b+c\right)^2}};\frac{4ca}{4ca+1}\le\frac{1}{1+\frac{1}{\left(c+a\right)^2}}\)

\(\Rightarrow VP\le\frac{1}{1+\frac{1}{\left(a+b\right)^2}}+\frac{1}{1+\frac{1}{\left(b+c\right)^2}}+\frac{1}{1+\frac{1}{\left(c+a\right)^2}}\)

BĐT cần chứng minh tương đương với 

\(a+b+c\ge\frac{1}{1+\frac{1}{\left(a+b\right)^2}}+\frac{1}{1+\frac{1}{\left(b+c\right)^2}}+\frac{1}{1+\frac{1}{\left(c+a\right)^2}}\) (1)

Đặt \(a+b=x;b+c=y;c+a=z\)

\(x,y,z>0;x+y+z=2\left(a+b+c\right)\)

\(\Rightarrow\left(1\right)\Leftrightarrow x+y+z\ge2\left(\frac{1}{1+\frac{1}{x^2}}+\frac{1}{1+\frac{1}{y^2}}+\frac{1}{1+\frac{1}{z^2}}\right)\)

\(VP=\frac{2x^2}{x^2+1}+\frac{2y^2}{y^2+1}+\frac{2z^2}{z^2+1}\le\frac{2x^2}{2x}+\frac{2y^2}{2y}+\frac{2z^2}{2z}=x+y+z=VT\)

Vậy BĐT được chứng minh

Dấu "=" xảy ra khi \(x=y=z=1\Leftrightarrow a=b=c=\frac{1}{2}\)

27 tháng 8 2020

\(\frac{4ab}{4ab+1}< =\frac{4ab}{2\sqrt{4ab}}=\sqrt{ab}\)

CMTT =>\(\hept{\begin{cases}\frac{4bc}{4bc+1}< =\sqrt{bc}\\\frac{4ac}{4ac+1}< =\sqrt{ac}\end{cases}}\)

Ta có \(a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ac}\)

=\(\frac{1}{2}\left(\left(a+2\sqrt{ab}+b\right)+\left(b+2\sqrt{bc}+c\right)+\left(c+2\sqrt{ac}+a\right)\right)\)

=\(\frac{1}{2}\left(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\right)>=0\)

dấu = xảy ra khi a=b=c.

\(=>a+b+c>=\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)\(>=\frac{4ab}{4ab+1}+\frac{4bc}{4bc+1}+\frac{4ac}{4ac+1}\)

1 tháng 8 2019

mình đánh nhầm, đề là cho a,b,c là các số thực dương tổng bằng 1

29 tháng 7 2017

a/ \(\frac{4bc-a^2}{bc+2a^2}.\frac{4ab-c^2}{ab+2c^2}.\frac{4ac-b^2}{ac+2b^2}\)

\(=\frac{4bc-\left(b+c\right)^2}{bc+2\left(b+c\right)^2}.\frac{4\left(-b-c\right)b-c^2}{\left(-b-c\right)b+2c^2}.\frac{4\left(-b-c\right)c-b^2}{\left(-b-c\right)c+2b^2}\)

\(=\frac{-\left(b-c\right)^2}{\left(c+2b\right)\left(b+2c\right)}.\frac{-\left(c+2b\right)^2}{-\left(b-c\right)\left(b+2c\right)}.\frac{-\left(b+2c\right)^2}{\left(b-c\right)\left(c+2b\right)}=1\)

29 tháng 7 2017

qua học 24 mà coi

29 tháng 7 2017

\(3a^2+4ab+b^2=3a^2+3ab+ab+b^2=3a\left(a+b\right)+b\left(a+b\right)=\left(3a+b\right)\left(a+b\right)\)

xong AM -GM

23 tháng 5 2017

cách làm như trên sẽ k được điểm, bởi bn làm ngược lại , đoán điểm rơi xong thay vào ,nếu k đoán được thì sao ?

thứ 2, a,b,c lớn nhất có thể = căn 3 >1  ,giả sử a= căn 3,b=c=0.

hôm nọ có god chém pqr rất thần thánh, e xin ''mượn'' lại:

Đặt \(\hept{\begin{cases}a+b+c=p\\ab+bc+ca=q\\abc=r\end{cases}}\)

\(P=2p+\frac{q}{r}\)

ta có BĐT \(q^2\ge3rp\)(auto chứng minh)

\(\Leftrightarrow\frac{q}{r}\ge\frac{3p}{q}\)

do đó \(P\ge2p+\frac{3p}{q}\)và \(q=\frac{p^2-3}{2}\)

cần cm \(P\ge9\Leftrightarrow2p+\frac{6p}{p^2-3}\ge9\Leftrightarrow\left(p-3\right)^2\left(2p+3\right)\ge0\)(luôn đúng)

vậy\(P\ge9\)

22 tháng 5 2017

\(Min\left(P\right)=9\)