Cho tam giác ABC vuông cân tại A. Trên cubgf một nửa mặt phẳng chứa A bờ BC vẽ các tia Bx,Cy cùng vuông góc với BC. Lấy M nằm giữa B và C. Đường thẳng vuông góc với AM tại A cắt Bx và Cy lần lượt tại H và K. Chứng minh
a) BM = CK
b) A là trung điểm của HK
c) Gọi P là giao điểm của AB và MH và Q là giao của AC và MK. Chứng minh PQ//BC
a) Xét tam giác ABM và tam giác ACK có:
AB = AC (gt)
\(\widehat{BAM}=\widehat{CAK}\) (Cùng phụ với \(\widehat{MAC}\) )
\(\widehat{ABM}=\widehat{ACK}\) (Cùng phụ với \(\widehat{BCA}\) )
\(\Rightarrow\Delta ABM=\Delta ACK\left(g-c-g\right)\)
\(\Rightarrow BM=CK\)
b) Gọi N là trung điểm BC. Do tam giác ABC cân tại A nên AN cũng là đường cao.
Do HB và KC cùng vuông góc với BC nên HB // CK.
Xét hình thang vuông HBCK có N là trung điểm BC, AN // HB // CK
Suy ra AN là đường trung bình hình thang. Vậy nên A là trung điểm HK.
làm tiếp câu c đi mình cần gấp