E= 1^2+2^2+3^2+...+59^2
giúp mik vs mik đag cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
(1-1/22).(1-1/32).(1-1/42).....(1-1/102)
=3/2.2 . 8/3.3 . 15/4.4 . ... . 99/10.10
=1.3.2.4.3.5.....9.11/2.2.3.3.4.4.....10.10
=1.2.3.....9/2.3.4.....10 . 3.4.5....11/2.3.4.....10
=1/10.11/2
=11/20
Chúc bạn học tốt!
\(\dfrac{x}{15}\)+\(\dfrac{x}{12}\)=4/1+1/2=9/2
=>x(\(\dfrac{1}{15}\)+\(\dfrac{1}{12}\))=9/2
=>x\(\cdot\)\(\dfrac{3}{20}\)=9/2
=>x=9/2:3/20=30
Vậy x=30
\(\dfrac{x}{15}+\dfrac{x}{12}=\dfrac{9}{2}\Rightarrow\left(\dfrac{1}{15}+\dfrac{1}{12}\right)x=\dfrac{9}{2}\)
\(\Rightarrow\left(\dfrac{12+18}{180}\right)x=\dfrac{9}{2}\Rightarrow\dfrac{30}{180}x=\dfrac{9}{2}\Rightarrow\dfrac{1}{6}x=\dfrac{9}{2}\Rightarrow x=\dfrac{9}{2}.6=27\)
a: \(x+\dfrac{3}{9}=\dfrac{7}{6}\cdot\dfrac{2}{3}\)
=>\(x+\dfrac{1}{3}=\dfrac{14}{18}=\dfrac{7}{9}\)
=>\(x=\dfrac{7}{9}-\dfrac{1}{3}=\dfrac{7}{9}-\dfrac{3}{9}=\dfrac{4}{9}\)
b: \(x-\dfrac{2}{3}=\dfrac{1}{8}:\dfrac{5}{4}\)
=>\(x-\dfrac{2}{3}=\dfrac{1}{8}\cdot\dfrac{4}{5}=\dfrac{1}{10}\)
=>\(x=\dfrac{1}{10}+\dfrac{2}{3}=\dfrac{3+20}{30}=\dfrac{23}{30}\)
Em bấm vào biểu tượng \(\sum\) trên thanh công cụ và gõ phân số để mn dễ hỗ trợ nhé!
`(x^2+x-6)/(x^2+4x+3):(x^2-10x+25)/(x^2-4x-5)(x ne -1,x ne 5,x ne -3)`
`=((x-2)(x+3))/((x+1)(x+3)):(x-5)^2/((x+1)(x-5))`
`=(x-2)/(x+1):(x-5)/(x+1)`
`=(x-2)/(x-5)`
a) Ta có: \(\dfrac{6x^2-8xy}{9xy-12y^2}\)
\(=\dfrac{2x\left(3x-4y\right)}{3y\left(3x-4y\right)}=\dfrac{2x}{3y}\)
b) \(\dfrac{2a^3-18a}{a^4-81}\)
\(=\dfrac{2a\left(a^2-9\right)}{\left(a^2-9\right)\left(a^2+9\right)}=\dfrac{2a}{a^2+9}\)
1. What do you do for fun?
2. It is a not hobby for her.
3. Why do you like it?
4. When did you start your hobby?
5. Do you intend to continue your hobby in the future?
6. I can't help doing it from time to time.
7. Sarah enjoys collecting cover bag tea.
8. That does not much fun it sound
9. I love doing nothing in my spare time.
10. Do you find collecting seashells interesting?
\(-x-2=\frac{5}{4}\)
\(\Rightarrow-x=\frac{5}{4}+2=\frac{13}{4}\)
\(\Rightarrow x=\frac{-13}{4}\)
\(-x-2=\frac{5}{4}\)
\(-x=\frac{5}{4}+2\)
\(-x=\frac{13}{4}\)
\(x=-\frac{13}{4}\)
\(\left(x-1\right)\left(x+1\right)\left(x+2\right)=0\)
\(TH1:x-1=0\Leftrightarrow x=1\)
\(TH2:x+1=0\Leftrightarrow x=-1\)
\(TH3:x+2=0\Leftrightarrow x=-2\)
nhân đa thức vs đa thức , ko phải tìm x đâu bạn ạ! dù sao cững cảm ơn nh!
3.42+(57:56)-(2.24)
=3.42+57-6-24+1
=3.42+51-25
=(3.42)+5-32
=48+5-32
=53-32
=21
\(E=1^2+2^2+3^2+....+59^2\)
\(E=1+2\left(1+1\right)+3\left(2+1\right)+...+59\left(58+1\right)\)
\(E=1+1\times2+2+2\times3+3+....+58\times59+59\)
\(E=\left(1+2+3+...+59\right)+\left(1\times2+2\times3+....+58\times59\right)\)
Ta đặt :
\(A=1+2+3+...+59\)
Số số hạng là \(\left(59-1\right)\div1+1=59\) số hạng
Tổng là \(\left(59+1\right)\times59\div2=1770\)
=> \(A=1770\)
Ta đặt
\(B=1\times2+2\times3+...+58\times59\)
\(3B=1\times2\times3+2\times3\times3+....+58\times59\times3\)
\(3B=1\times2\times3+2\times3\times\left(4-1\right)+...+58\times59\times\left(57-54\right)\)
\(3B=1\times2\times3+2\times3\times4-2\times3\times1+...+58\times59\times57-58\times59\times54\)
\(3B=58\times59\times57\)
\(B=58\times59\times19\)
\(B=65018\)
=> \(E=A+B\)
=> \(E=1770+65018\)
=> \(E=66788\)
Trước hết ta sẽ chứng minh \(1^2+2^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\) (*). Thật vậy, với \(n=1\) thì hiển nhiên \(1^2=\dfrac{1\left(1+1\right)\left(2.1+1\right)}{6}\). Giả sử (*) đúng đến \(n=k\), khi đó \(1^2+2^2+...+k^2=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}\). Ta cần chứng minh (*) đúng với \(n=k+1\). Ta có:
\(1^2+2^2+...+k^2+\left(k+1\right)^2\)
\(=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)
\(=\dfrac{\left(k+1\right)\left(2k^2+k+6\left(k+1\right)\right)}{6}\)
\(=\dfrac{\left(k+1\right)\left(2k^2+7k+6\right)}{6}\)
\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)
\(=\dfrac{\left(k+1\right)\left[\left(k+1\right)+1\right]\left[2\left(k+1\right)+1\right]}{6}\).
Vậy (*) đúng với \(n=k+1\). Ta có đpcm. Thay \(n=59\) thì ta có:
\(E=1^2+2^2+...+59^2=\dfrac{59\left(59+1\right)\left(2.59+1\right)}{6}=70210\)