K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AC vuông góc BD

AC vuông góc SO

=>AC vuông góc (SBD)

=>SB vuông góc AC

mà AC vuông góc BD

nên AC vuông góc (SBD)

BD vuông góc AC

BD vuông góc SO

=>BD vuông góc (SAC)

=>BD vuông góc SA
b: Xét ΔACB có CO/CA=CI/CB

nên OI//AB

=>OI vuông góc BC

BC vuông góc OI

BC vuông góc SO

=>BC vuông góc (SOI)

=>(SBC) vuông góc (SOI)

2 tháng 4 2016

D H S M B N C K A P

Gọi H là trung điểm của AD. Do tam giác SAD là tam giác đều nên SH vuông góc với AD

Do mặt phẳng (SAD) vuông góc với mặt phẳng (ABCD) nên SH vuông góc với BP(1)

Xét hình vuông ABCD ta có :

\(\Delta CDH=\Delta BCP\Rightarrow CH\perp BP\) (2)

Từ (1) và (2) ta suy ra \(BP\perp\left(SHC\right)\)

Vì \(\begin{cases}MN||SC\\AN||CH\end{cases}\) \(\Rightarrow\left(AMN\right)||\left(SHC\right)\)

\(\Rightarrow BP\perp\left(AMN\right)\Rightarrow BP\perp AM\)

Kẻ vuông góc với mặt phẳng (ABCD), K thuộc vào mặt phẳng (ABCD), ta có :

\(V_{CMNP}=\frac{1}{3}MK.S_{CNP}\)

Vì \(MK=\frac{1}{2}SH=\frac{a\sqrt{3}}{4};S_{CNP}=\frac{1}{2}CN.CP=\frac{a^2}{8}\)

\(\Rightarrow V_{CMNP}=\frac{\sqrt{3}a^2}{96}\)

27 tháng 12 2019

Chọn B

Gọi I là hình chiếu của M lên (ABCD), suy ra I là trung điểm của AO.

 Khi đó

Xét tam giác CNI có

Áp dụng định lý cosin ta có:

Xét tam giác MIN vuông tại I  nên

Mà MI//SO

Chọn hệ trục tọa độ như hình vẽ. Ta có:

Khi đó 

Vectơ pháp tuyến mặt phẳng (SBD)

Suy ra 

22 tháng 8 2018

9 tháng 10 2017

Đáp án C

Gọi H là trung điểm của OA

9 tháng 6 2019

Giải bài 10 trang 114 sgk Hình học 11 | Để học tốt Toán 11

a) Theo giả thiết, S.ABCD là hình chóp đều và đáy ABCD là hình vuông nên SO ⊥ (ABCD) ( tính chất hình chóp đều)

Đáy ABCD là hình vuông cạnh a nên

Giải bài 10 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 10 trang 114 sgk Hình học 11 | Để học tốt Toán 11

=> Góc giữa hai mặt phẳng (MBD) và (ABCD) là 45 o

11 tháng 3 2017

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ. Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích...
Đọc tiếp

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.

Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.

Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.

Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .

. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:

a.Tính thể tích khối chóp S.ABC

b.Chứng minh SC vuông góc với (AB'C')

c.Tính thể tích khối chóp S.ABC

0
26 tháng 10 2017

Chọn đáp án C.

Gọi O là tâm của hình vuông ABCD thì  B D ⊥ S A O

NV
21 tháng 4 2021

Do S.ABCD là chóp đều \(\Rightarrow BD\perp\left(SAC\right)\)

Mà BD là giao tuyến (MBD) và (ABCD)

\(\Rightarrow\widehat{MOC}\) là góc giữa (MBD) và (ABCD)

\(OC=\dfrac{AC}{2}=\dfrac{a\sqrt{2}}{2}\) ; \(MC=OM=\dfrac{1}{2}SC=\dfrac{a}{2}\)

Áp dụng định lý hàm cosin:

\(cos\widehat{MOC}=\dfrac{OM^2+OC^2-CM^2}{2OM.OC}=\dfrac{\sqrt{2}}{2}\)

\(\Rightarrow\widehat{MOC}=45^0\)