Cm: \(\sqrt{1^3+2^3+...+n^3}=1+2+...+n\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bai 1
(n+1)√n=√n^3+√n>2√(n^3.n)=2n^2>2(n^2-1)=2(n-1)(n+1)
1/[(n+1)√n]<1/[2(n-1)(n+1)]=1/4.[2/(n-1)(n+1)]
A=..
n =1 yes
n>1
A<1+1/4[2/1.3+2/3.5+..+2/(n-1)(n+1)
A<1+1/4[ 2-1/(n+1)]<1+1/2<2=>dpcm
(Fix luôn lại đề)
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\left(n\in N\right)=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
=\(\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left(n+1-n\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)
=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Bài 2:
Áp dụng bài 1 vào A được:
A\(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)
Áp dụng BBĐT thức bu nhi a cốp x ki : \(\left(a1b1+a2b2+...+anbn\right)^2\le\left(a1^2+a2^2+...+an^2\right)\left(b1^2+b2^2+...+bn^2\right)\)
( 1 ; 2 ; ... ; n là chỉ số )
với \(a1=a2=...=an=1\)
; \(b1=\sqrt{1};...bn=\sqrt{n}\)
Ta có :
\(\left(\sqrt{1}+\sqrt{2}+...+\sqrt{n}\right)^2\le\left(1+1+...+1\right)\left(1+2+3+..+n\right)=\frac{n.n\left(n+1\right)}{2}=\frac{n^2\left(n+1\right)}{2}\)
( có n số 1 )
=> \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{n}\le\sqrt{\frac{n^2\left(n+1\right)}{2}}=n\sqrt{\frac{n+1}{2}}\)
Bài này thầy đã giải ở đây rồi em nhé: http://olm.vn/hoi-dap/question/176263.html
Giải:
Ta có:
\(\sqrt{1}< \sqrt{n}\Leftrightarrow\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{n}}\)
\(\sqrt{2}< \sqrt{n}\Leftrightarrow\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{n}}\)
\(\sqrt{3}< \sqrt{n}\Leftrightarrow\dfrac{1}{\sqrt{3}}>\dfrac{1}{\sqrt{n}}\)
...
\(\sqrt{n}=\sqrt{n}\Leftrightarrow\dfrac{1}{\sqrt{n}}=\dfrac{1}{\sqrt{n}}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}>\dfrac{1}{\sqrt{n}}+\dfrac{1}{\sqrt{n}}+\dfrac{1}{\sqrt{n}}+\dfrac{1}{\sqrt{n}}+...+\dfrac{1}{\sqrt{n}}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}>\dfrac{n}{\sqrt{n}}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}>\sqrt{n}\)
Vậy ...
Bạn dùng quy nạp nhé, chứng minh bài này nhanh thôi.
cái này qua học 24 tha hồ surt