cho tam giác ABC có ab=3cm bc=10 cm tính ac biết tam giác abc vuông tạia
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
a. Xét ΔHBA và ΔABC có:
\(\widehat{H}=\widehat{A}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔHBA \(\sim\) ΔABC (g.g)
b. Vì ΔABC vuông tại A
Theo đ/lí Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 32 + 42
\(\Rightarrow\) BC2 = 25 cm
\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm
Ta lại có: ΔHBA \(\sim\) ΔABC
\(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)
\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\)
\(\Rightarrow\) AH = 2,4 cm
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=BH^2+CH^2\)
\(\Leftrightarrow AC^2=5^2+12^2=169\)
hay AC=13(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB=\dfrac{AH^2}{HC}=\dfrac{12^2}{5}=28.8\left(cm\right)\)
Ta có: BC=HB+HC(H nằm giữa B và C)
nên BC=28,8+5=33,8(cm)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AB^2=BC^2-AC^2=33.8^2-13^2=973.44\)
hay \(AB=31.2cm\)
Vậy: AC=13cm; AB=31,2cm; BC=33,8cm; BH=28,8cm
Áp dụng định lí Pytago vào ΔBAH vuông tại H, ta được:
\(AH^2+HB^2=AB^2\)
\(\Leftrightarrow HB^2=AB^2-AH^2=30^2-24^2=324\)
hay HB=18(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC=\dfrac{AH^2}{HB}=\dfrac{24^2}{18}=32\left(cm\right)\)
Ta có: BC=HB+HC(H nằm giữa B và C)
nên BC=18+32=50(cm)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\LeftrightarrowÁC^2=BC^2-AB^2=50^2-30^2=1600\)
hay AC=40cm
Vậy: AC=40cm; CH=32cm; BC=50cm; BH=18cm
a: Xét ΔABC vuông tại A có \(BC^2=AB^2+AC^2\)
=>\(BC^2=4^2+7,5^2=72,25\)
=>\(BC=\sqrt{72,25}=8,5\)
Xét ΔABC vuông tại A có \(cotB=\dfrac{BA}{AC}\)
=>\(cotB=\dfrac{4}{7,5}=\dfrac{8}{15}\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
Xét ΔABH vuông tại H có \(cotB=\dfrac{BH}{AH}\)
=>\(\dfrac{BH}{AH}=\dfrac{8}{15}\)
=>\(BH=\dfrac{8}{15}\cdot AH\)
\(AB^2=BH\cdot BC=\dfrac{8}{15}\cdot AH\cdot BC\)
Tại mình không có cầm máy tính mà
mk làm đc r nhé dễ quá đăng thử thui hiih