giải phương trình
x^3 + 3x^2 -3x +1 =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^2\)≥1
\(\Leftrightarrow\) x>1
b, \(x^2\)<1
\(\Rightarrow\) x∈∅
c, \(x^2\)+3x ≥ 0
\(\Leftrightarrow\) \(x^2\)≥-3x
\(\Leftrightarrow\) x≥-3
d, \(x^2\)+3x+3≥0
\(\Leftrightarrow\) \(\left(x+\dfrac{3}{2}\right)^2\)+\(\dfrac{3}{4}\)≥0+\(\dfrac{3}{4}\)
\(\Leftrightarrow\) \(x^2\)+\(\dfrac{3}{2}^2\)≥0
\(\Leftrightarrow\)\(x^2\)≥\(\dfrac{9}{4}\)
\(\Leftrightarrow\)x≥\(\dfrac{3}{2}\)
\(\Leftrightarrow x^3-x^2-8x^2+8x+11x-11=0\)
\(\Leftrightarrow x^2\left(x-1\right)-8x\left(x-1\right)+11\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-8x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2-8x+11=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4-\sqrt{5}\\x=4+\sqrt{5}\end{matrix}\right.\)
\(x-4\sqrt{x-2}+1=0\)(Đk x>2)
⇔\(x-2-4\sqrt{x-2}+4-1=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-2\right)^2-1=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-3\right)\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}-3=0\\\sqrt{x-2}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=3\\\sqrt{x-2}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=9\\x-2=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=11\\x=3\end{matrix}\right.\)(thảo đk)
Vậy\(\left[{}\begin{matrix}x=11\\x=3\end{matrix}\right.\)là nghiệm của pt
a) \(x^2-3x^3+4x^2-3x+1=0\)
\(\Leftrightarrow-3x^3+5x^2-3x+1=0\)
\(\Leftrightarrow-3x^3+2x^2-x+3x^2-2x+1=0\)
\(\Leftrightarrow x\left(-3x^2+2x-1\right)-1\left(-3x^2+2x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-3x^2+2x-1\right)=0\)
\(\Rightarrow x-1=0\) \(\Leftrightarrow x=1\)
Vậy \(x=1\)
b) \(3x^4-13x^3+16x^2-13x+3=0\)
\(\Leftrightarrow3x^4-4x^3+4x^2-x-9x^3+12x^2+12x+3=0\)
\(\Leftrightarrow x\left(3x^3-4x^2+4x-1\right)-3\left(3x^3-4x^2+4x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x^3-4x^2+4x-1\right)=0\)
\(\Leftrightarrow3\left(x-3\right)\left(x-\dfrac{1}{3}\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{3;\dfrac{1}{3}\right\}\)
a) Ta có: \(x^2-3x^3+4x^2-3x+1=0\)
\(\Leftrightarrow-3x^3+5x^2-3x+1=0\)
\(\Leftrightarrow-3x^3+3x^2+2x^2-2x-x+1=0\)
\(\Leftrightarrow-3x^2\left(x-1\right)+2x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-3x^2+2x-1\right)=0\)
mà \(-3x^2+2x-1\ne0\forall x\)
nên x-1=0
hay x=1
Vậy: S={1}
b) Ta có: \(3x^4-13x^3+16x^2-13x+3=0\)
\(\Leftrightarrow3x^4-9x^3-4x^3+12x^2+4x^2-12x-x+3=0\)
\(\Leftrightarrow3x^3\left(x-3\right)-4x^2\left(x-3\right)+4x\left(x-3\right)-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x^3-4x^2+4x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x^3-x^2-3x^2+x+3x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[x^2\left(3x-1\right)-x\left(3x-1\right)+\left(3x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x-1\right)\left(x^2-x+1\right)=0\)
mà \(x^2-x+1\ne0\forall x\)
nên \(\left(x-3\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{1}{3};3\right\}\)
a) 3x - 2 = 2x - 3
⇔ 3x - 2x = -3 + 2
⇔ x = -1
Vậy x = -1 là nghiệm của PT
b ) -3x + \(\dfrac{1}{3}=0\)
⇔\(\dfrac{-3x\cdot3}{3}+\dfrac{1}{3}=0\)
⇔-9x +1 = 0
⇔-9x = -1
⇔ x = \(\dfrac{1}{9}\)
Vậy x = \(\dfrac{1}{9}\)là nghiệm của PT
c) \(\dfrac{1}{2x}+2=0\)
⇔\(\dfrac{1}{2x}+\dfrac{2\cdot2x}{2x}=0\)
⇔1 + 4x = 0
⇔ 4x = -1
⇔ x = \(\dfrac{-1}{4}\)
Vậy x =\(\dfrac{-1}{4}\) là nghiệm của PT
d)\(\dfrac{-1}{3x}+3=0\)
⇔\(\dfrac{-1}{3x}+\dfrac{3\cdot3x}{3x}=0\)
⇔ -1 + 9x = 0
⇔ 9x = 1
⇔ x = \(\dfrac{1}{9}\)
Vậy x = \(\dfrac{1}{9}\)là nghiệm của PT
\(\dfrac{3x}{x^2-x+3}-\dfrac{2x}{x^2-3x+3}+1=0\left(a\right)\)
Ta có : \(x^2-x+3=x^2-x+\dfrac{1}{4}+\dfrac{11}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\)
\(x^2-3x+3=x^2-3x+\dfrac{9}{4}+\dfrac{3}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0\)
\(\RightarrowĐKXĐ:x\in R\)
Đặt : \(t=x^2-x+3\)
\(\left(a\right)\Leftrightarrow\dfrac{3x}{t}-\dfrac{2x}{t-2x}+1=0\)
\(\Leftrightarrow3x\left(t-2x\right)-2xt+t\left(t-2x\right)=0\)
\(\Leftrightarrow t^2-xt-6x^2=0\)
\(\Leftrightarrow t^2+2xt-3xt-6x^2=0\)
\(\Leftrightarrow t\left(t+2x\right)-3x\left(t+2x\right)=0\)
\(\Leftrightarrow\left(t-3x\right)\left(t+2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t-3x=0\\t+2x=0\end{matrix}\right.\left(b\right)\)
Thay \(t=x^2-x+3\) lại vào (b) được :
\(\left[{}\begin{matrix}x^2-x+3-3x=0\\x^2-x+3+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2-4x+3=0\\x^2+x+3=0\end{matrix}\right.\left(c\right)\)
Mà : \(x^2-4x+3=x^2-x-3x+3\)
\(=x\left(x-1\right)-3\left(x-1\right)=\left(x-1\right)\left(x-3\right)\left(c'\right)\)
và : \(x^2+x+3=x^2+x+\dfrac{1}{4}+\dfrac{11}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\left(c''\right)\)
Thay (c') và (c'') vào (c) được :
\(\left[{}\begin{matrix}\left(x-1\right)\left(x-3\right)=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-1=0\Leftrightarrow x=1\left(tmđk\right)\\x-3=0\Leftrightarrow x=3\left(tmđk\right)\end{matrix}\right.\\\left(x+\dfrac{1}{2}\right)^2=-\dfrac{11}{4}\Leftrightarrow x\in\varnothing\end{matrix}\right.\)
Vậy : Phương trình có tập nghiệm \(S=\left\{1;3\right\}\)
1) \(\sqrt[]{3x+7}-5< 0\)
\(\Leftrightarrow\sqrt[]{3x+7}< 5\)
\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)
\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)
\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)
bấm nghiệm mà giải ý,,,mà Lạc Hy là j tek
tui cần lời giải cơ mà
Lạc Hy là tên thôi