Tính : \(\sqrt{7-6\sqrt{2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\sqrt{\left(\sqrt{6}+1\right)^2}-\sqrt{\left(\sqrt{6}-1\right)^2}=\sqrt{6}+1-\sqrt{6}+1=2\)
g: \(=\left|\sqrt{6}-1\right|=\sqrt{6}-1\)
h: \(=\left|2\sqrt{3}-1\right|=2\sqrt{3}-1\)
l: \(=\left|2-\sqrt{3}\right|-2=2-\sqrt{3}-2=-\sqrt{3}\)
j: \(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
`A=sqrt{8+2sqrt7}-sqrt{8-2sqrt7}`
`=sqrt{7+2sqrt7+1}-sqrt{7-2sqrt7+1}`
`=sqrt{(sqrt7+1)^2}-sqrt{(sqrt7-1)^2}`
`=sqrt7+1-sqrt7+1=2`
`B=sqrt{11-6sqrt2}+sqrt{6-4sqrt2}`
`=sqrt{9-2.3.sqrt2+2}+sqrt{4-2.2.sqrt2+2}`
`=sqrt{(3-sqrt2)^2}+sqrt{(2-sqrt2)^2}`
`=3-sqrt2+2-sqrt2=5-2sqrt2`
1) \(=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
2) \(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}\)
3) \(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\sqrt{5}-\sqrt{2}\)
5) \(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)
6) \(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\sqrt{7}-\sqrt{3}\)
7) \(=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)
Đặt \(\sqrt[3]{6-2\sqrt{7}}=a\), \(\sqrt[3]{6+2\sqrt{7}}=b\)
\(\Rightarrow\left\{{}\begin{matrix}a^3+b^3=12\\ab=2\end{matrix}\right.\)
\(x=\sqrt[3]{6-2\sqrt{7}}+\sqrt[3]{6+2\sqrt{7}}=a+b\)
\(\Rightarrow x^3=a^3+b^3+3ab\left(a+b\right)=12+3.2\left(a+b\right)=12+6x\)
\(\Rightarrow x^3-6x-12=0\)
\(Q=x^3-6x+17=\left(x^3-6x-12\right)+29=29\)
Ta có :
\(b^2=\left(3+\sqrt{6+\sqrt{7+\sqrt{2}}}\right)\left(3-\sqrt{6+\sqrt{7+\sqrt{2}}}\right)\)
\(b^2=9-\left(6+\sqrt{7+\sqrt{2}}\right)\)
\(b^2=3-\sqrt{7+\sqrt{2}}\)
\(\Rightarrow b=\sqrt{3-\sqrt{7+\sqrt{2}}}\)
Tích ab :
\(ab=\sqrt{2+\sqrt{2}}.\sqrt{3+\sqrt{7+\sqrt{2}}}.\sqrt{3-\sqrt{7+\sqrt{2}}}\)
\(ab=\sqrt{2+\sqrt{2}}.\left(9-7-\sqrt{2}\right)\)
\(ab=\sqrt{2+\sqrt{2}}.\left(2-\sqrt{2}\right)\)
P/s : làm được thế này thui . Sai bỏ qua
\(\frac{1}{\sqrt{7-2\sqrt{6}+1}}-\frac{1}{\sqrt{7+2\sqrt{6}}-1}\)=0,1596200809 NHA thien lu !!!
M2=(√4+√7−√4−√7)2
M2=(√4+√7)2−2.√4+√7.√4−√7+(√4−√7)2
M2=4+√7−2√(4+√7)(4−√7)+4−√7
M2=8−2√16−7
M2=8−2√9=8−2.3=8−6=2
M=+ √2
Lời giải:
$a+b=\frac{\sqrt{6}+\sqrt{2}+\sqrt{6}-\sqrt{2}}{2}=\sqrt{6}$
$ab=\frac{(\sqrt{6}-\sqrt{2})(\sqrt{6}+\sqrt{2})}{2.2}=\frac{6-2}{4}=1$
Khi đó:
$S=\frac{1}{a^7}+\frac{1}{b^7}=\frac{a^7+b^7}{a^7b^7}$
$=\frac{a^7+b^7}{(ab)^7}=\frac{a^7+b^7}{1}=a^7+b^7$
$=(a^3+b^3)(a^4+b^4)-a^3b^3(a+b)$
$=(a^3+b^3)(a^4+b^4)-(a+b)$
Ta có:
$a^3+b^3=(a+b)^3-3ab(a+b)=(\sqrt{6})^3-3\sqrt{6}=6\sqrt{6}-3\sqrt{6}=3\sqrt{6}$
$a^4+b^4=(a^2+b^2)^2-2a^2b^2=(a^2+b^2)^2-2$
$=[(a+b)^2-2ab]^2-2=(6-2)^2-2=14$
$S=3\sqrt{6}.14-\sqrt{6}=41\sqrt{6}$
Do \(6\sqrt{2}>7=>7-6\sqrt{2}< 0\)
\(=>\sqrt{7-6\sqrt{2}}\)không tồn tại (vô nghĩa)