K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

Do \(6\sqrt{2}>7=>7-6\sqrt{2}< 0\)

\(=>\sqrt{7-6\sqrt{2}}\)không tồn tại (vô nghĩa)

31 tháng 10 2021

\(=\sqrt{\left(\sqrt{6}+1\right)^2}-\sqrt{\left(\sqrt{6}-1\right)^2}=\sqrt{6}+1-\sqrt{6}+1=2\)

g: \(=\left|\sqrt{6}-1\right|=\sqrt{6}-1\)

h: \(=\left|2\sqrt{3}-1\right|=2\sqrt{3}-1\)

l: \(=\left|2-\sqrt{3}\right|-2=2-\sqrt{3}-2=-\sqrt{3}\)

j: \(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)

\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)

29 tháng 6 2021

`A=sqrt{8+2sqrt7}-sqrt{8-2sqrt7}`

`=sqrt{7+2sqrt7+1}-sqrt{7-2sqrt7+1}`

`=sqrt{(sqrt7+1)^2}-sqrt{(sqrt7-1)^2}`

`=sqrt7+1-sqrt7+1=2`

`B=sqrt{11-6sqrt2}+sqrt{6-4sqrt2}`

`=sqrt{9-2.3.sqrt2+2}+sqrt{4-2.2.sqrt2+2}`

`=sqrt{(3-sqrt2)^2}+sqrt{(2-sqrt2)^2}`

`=3-sqrt2+2-sqrt2=5-2sqrt2`

25 tháng 9 2021

1) \(=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

2) \(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}\)

3) \(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\sqrt{5}-\sqrt{2}\)

5) \(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)

6) \(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\sqrt{7}-\sqrt{3}\)

7) \(=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)

26 tháng 7 2018

\(\frac{-20+32\sqrt{7}}{9}\)

26 tháng 7 2018

các bn trình bày bài giải cho mk nha :D

24 tháng 8 2021

ai giúp mk vs ạ

 

24 tháng 8 2021

Đặt \(\sqrt[3]{6-2\sqrt{7}}=a\)\(\sqrt[3]{6+2\sqrt{7}}=b\)

\(\Rightarrow\left\{{}\begin{matrix}a^3+b^3=12\\ab=2\end{matrix}\right.\)

\(x=\sqrt[3]{6-2\sqrt{7}}+\sqrt[3]{6+2\sqrt{7}}=a+b\)

\(\Rightarrow x^3=a^3+b^3+3ab\left(a+b\right)=12+3.2\left(a+b\right)=12+6x\)

\(\Rightarrow x^3-6x-12=0\)

\(Q=x^3-6x+17=\left(x^3-6x-12\right)+29=29\)

20 tháng 8 2020

Ta có :

\(b^2=\left(3+\sqrt{6+\sqrt{7+\sqrt{2}}}\right)\left(3-\sqrt{6+\sqrt{7+\sqrt{2}}}\right)\)

\(b^2=9-\left(6+\sqrt{7+\sqrt{2}}\right)\)

\(b^2=3-\sqrt{7+\sqrt{2}}\)

\(\Rightarrow b=\sqrt{3-\sqrt{7+\sqrt{2}}}\)

Tích ab :

\(ab=\sqrt{2+\sqrt{2}}.\sqrt{3+\sqrt{7+\sqrt{2}}}.\sqrt{3-\sqrt{7+\sqrt{2}}}\)

\(ab=\sqrt{2+\sqrt{2}}.\left(9-7-\sqrt{2}\right)\)

\(ab=\sqrt{2+\sqrt{2}}.\left(2-\sqrt{2}\right)\)

P/s : làm được thế này thui . Sai bỏ qua

9 tháng 7 2017

\(\frac{1}{\sqrt{7-2\sqrt{6}+1}}-\frac{1}{\sqrt{7+2\sqrt{6}}-1}\)=0,1596200809 NHA  thien lu !!!

9 tháng 7 2017

M2=(4+747)2

M2=(4+7)22.4+7.47+(47)2

M2=4+72(4+7)(47)+47

M2=82167

M2=829=82.3=86=2

M=+ 2

  
AH
Akai Haruma
Giáo viên
2 tháng 9 2023

Lời giải:
$a+b=\frac{\sqrt{6}+\sqrt{2}+\sqrt{6}-\sqrt{2}}{2}=\sqrt{6}$

$ab=\frac{(\sqrt{6}-\sqrt{2})(\sqrt{6}+\sqrt{2})}{2.2}=\frac{6-2}{4}=1$

Khi đó:
$S=\frac{1}{a^7}+\frac{1}{b^7}=\frac{a^7+b^7}{a^7b^7}$

$=\frac{a^7+b^7}{(ab)^7}=\frac{a^7+b^7}{1}=a^7+b^7$

$=(a^3+b^3)(a^4+b^4)-a^3b^3(a+b)$

$=(a^3+b^3)(a^4+b^4)-(a+b)$

Ta có:

$a^3+b^3=(a+b)^3-3ab(a+b)=(\sqrt{6})^3-3\sqrt{6}=6\sqrt{6}-3\sqrt{6}=3\sqrt{6}$

$a^4+b^4=(a^2+b^2)^2-2a^2b^2=(a^2+b^2)^2-2$

$=[(a+b)^2-2ab]^2-2=(6-2)^2-2=14$

$S=3\sqrt{6}.14-\sqrt{6}=41\sqrt{6}$